Suppr超能文献

通过文本阅读任务利用多模态媒体自动检测精神分裂症

Automatic Schizophrenia Detection Using Multimodality Media via a Text Reading Task.

作者信息

Zhang Jing, Yang Hui, Li Wen, Li Yuanyuan, Qin Jing, He Ling

机构信息

College of Biomedical Engineering, Sichuan University, Chengdu, China.

Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.

出版信息

Front Neurosci. 2022 Jul 14;16:933049. doi: 10.3389/fnins.2022.933049. eCollection 2022.

Abstract

Schizophrenia is a crippling chronic mental disease that affects people worldwide. In this work, an automatic schizophrenia detection algorithm is proposed based on the reading deficit of schizophrenic patients. From speech and video modalities, the automatic schizophrenia detection algorithm illustrates abnormal speech, head movement, and reading fluency during the reading task. In the speech modality, an acoustic model of speech emotional flatness in schizophrenia is established to reflect the emotional expression flatness of schizophrenic speech from the perspective of speech production and perception. In the video modality, the head-movement-related features are proposed to illustrate the spontaneous head movement caused by repeated reading and unconscious movement, and the reading-fluency-related features are proposed to convey the damaged degree of schizophrenic patients' reading fluency. The experimental data of this work are 160 segments of speech and video data recorded by 40 participants (20 schizophrenic patients and 20 normal controls). Combined with support vector machines and random forest, the accuracy of the proposed acoustic model, the head-movement-related features, and the reading-fluency-related features range from 94.38 to 96.50%, 73.38 to 83.38%, and 79.50 to 83.63%, respectively. The average accuracy of the proposed automatic schizophrenia detection algorithm reaches 97.50%. The experimental results indicate the effectiveness of the proposed automatic detection algorithm as an auxiliary diagnostic method for schizophrenia.

摘要

精神分裂症是一种严重的慢性精神疾病,影响着世界各地的人们。在这项工作中,基于精神分裂症患者的阅读缺陷提出了一种自动精神分裂症检测算法。从语音和视频模态来看,该自动精神分裂症检测算法展示了阅读任务期间的异常语音、头部运动和阅读流畅性。在语音模态中,建立了精神分裂症语音情感平淡的声学模型,从语音产生和感知的角度反映精神分裂症患者语音的情感表达平淡。在视频模态中,提出了与头部运动相关的特征来阐释由重复阅读和无意识运动引起的自发头部运动,并且提出了与阅读流畅性相关的特征来传达精神分裂症患者阅读流畅性的受损程度。这项工作的实验数据是由40名参与者(20名精神分裂症患者和20名正常对照)记录的160段语音和视频数据。结合支持向量机和随机森林,所提出的声学模型、与头部运动相关的特征以及与阅读流畅性相关的特征的准确率分别在94.38%至96.50%、73.38%至83.38%以及79.50%至83.63%之间。所提出的自动精神分裂症检测算法的平均准确率达到97.50%。实验结果表明所提出的自动检测算法作为精神分裂症辅助诊断方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858c/9331283/e1bd97753be4/fnins-16-933049-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验