Opt Lett. 2022 Aug 1;47(15):3892-3895. doi: 10.1364/OL.464214.
We propose and experimentally demonstrate an optical processor for a binarized neural network (NN). Implementation of a binarized NN involves multiply-accumulate operations, in which positive and negative weights should be implemented. In the proposed processor, the positive and negative weights are realized by switching the operations of a dual-drive Mach-Zehnder modulator (DD-MZM) between two quadrature points corresponding to two binary weights of +1 and -1, and the multiplication is also performed at the DD-MZM. The accumulation operation is realized by dispersion-induced time delays and detection at a photodetector (PD). A proof-of-concept experiment is performed. A binarized convolutional neural network (CNN) accelerated by the optical processor at a speed of 32 giga floating point operations/s (GFLOPS) is tested on two benchmark image classification tasks. The large bandwidth and parallel processing capability of the processor has high potential for next generation data computing.
我们提出并实验演示了一种用于二值神经网络 (NN) 的光学处理器。二值神经网络的实现涉及乘法-累加操作,其中应实现正权重和负权重。在提出的处理器中,正权重和负权重通过在对应于二值权重+1 和-1 的两个正交点之间切换双驱动马赫-曾德尔调制器 (DD-MZM) 的操作来实现,并且乘法也在 DD-MZM 中执行。通过在光电探测器 (PD) 处的色散诱导的时间延迟和检测来实现累加操作。进行了概念验证实验。在两个基准图像分类任务上,使用光学处理器以 32 亿次浮点运算/秒 (GFLOPS) 的速度加速二值卷积神经网络 (CNN)。处理器的大带宽和并行处理能力具有下一代数据计算的巨大潜力。