Suppr超能文献

基于轨迹预测的自主水下航行器动态目标跟踪控制

Dynamic Target Tracking Control of Autonomous Underwater Vehicle Based on Trajectory Prediction.

出版信息

IEEE Trans Cybern. 2023 Mar;53(3):1968-1981. doi: 10.1109/TCYB.2022.3189688. Epub 2023 Feb 15.

Abstract

Underwater dynamic target tracking technology has a wide application prospect in marine resource exploration, underwater engineering operations, naval battlefield monitoring, and underwater precision guidance. Aiming at the underwater dynamic target tracking problem, an autonomous underwater vehicle tracking control method based on trajectory prediction is studied. First, a deep learning-based target detection algorithm is developed. For the image collected by the multibeam forward-looking sonar image, this algorithm uses the YOLO v3 network to determine the target in a sonar image and obtain the position of the target. Then, a time profit Elman neural network (TPENN) is constructed to predict the trajectory information of the dynamic target. Compared with an ordinary Elman neural network, its accuracy of dynamic target prediction is increased. Finally, underwater tracking of the dynamic target is realized using the model predictive controller (MPC), and the tracking result is stable and reliable. Through simulations and experiment, the proposed underwater dynamic target tracking control method is demonstrated to be effective and feasible.

摘要

水下动态目标跟踪技术在海洋资源勘探、水下工程作业、海军战场监测和水下精确制导等领域具有广泛的应用前景。针对水下动态目标跟踪问题,研究了一种基于轨迹预测的自主水下航行器跟踪控制方法。首先,开发了一种基于深度学习的目标检测算法。对于多波束前视声纳图像采集的图像,该算法使用 YOLO v3 网络确定声纳图像中的目标,并获取目标的位置。然后,构建了一个时间利润 Elman 神经网络(TPENN)来预测动态目标的轨迹信息。与普通的 Elman 神经网络相比,它提高了动态目标预测的准确性。最后,使用模型预测控制器(MPC)实现对动态目标的水下跟踪,跟踪结果稳定可靠。通过仿真和实验,验证了所提出的水下动态目标跟踪控制方法的有效性和可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验