Suppr超能文献

使用 M 估计抽样一致性(MSAC)进行全自动背景相位校正 - 应用于 2D 和 4D 流。

Fully automated background phase correction using M-estimate SAmple consensus (MSAC)-Application to 2D and 4D flow.

机构信息

Department of Medical Imaging, Technical University of Berlin, Berlin, Germany.

Magnetic Resonance, Siemens Healthcare, Erlangen, Germany.

出版信息

Magn Reson Med. 2022 Dec;88(6):2709-2717. doi: 10.1002/mrm.29363. Epub 2022 Aug 2.

Abstract

PURPOSE

Flow quantification by phase-contrast MRI is hampered by spatially varying background phase offsets. Correction performance by polynomial regression on stationary tissue may be affected by outliers such as wrap-around or constant flow. Therefore, we propose an alternative, M-estimate SAmple Consensus (MSAC) to reject outliers, and improve and fully automate background phase correction.

METHODS

The MSAC technique fits polynomials to randomly drawn small samples from the image. Over several trials, it aims to find the best consensus set of valid pixels by rejecting outliers to the fit and minimizing the residuals of the remaining pixels. The robustness of MSAC to its few parameters was investigated and verified using third-order polynomial correction fits on a total of 118 2D flow (97 with wrap-around) and 18 4D flow data sets (14 with wrap-around), acquired at 1.5 T and 3 T. Background phase was compared with standard stationary correction and phantom correction. Pulmonary/systemic flow ratios in 2D flow were derived, and exemplary 4D flow analysis was performed.

RESULTS

The MSAC technique is robust over a range of parameter choices, and a unique set of parameters is suitable for both 2D and 4D flow. In 2D flow, phase errors were significantly reduced by MSAC compared with stationary correction (p = 0.005), and stationary correction shows larger errors in pulmonary/systemic flow ratios compared with MSAC. In 4D flow, MSAC shows similar performance as stationary correction.

CONCLUSIONS

The MSAC method provides fully automated background phase correction to 2D and 4D flow data and shows improved robustness over stationary correction, especially with outliers present.

摘要

目的

相位对比 MRI 的流量量化受到空间变化的背景相位偏移的阻碍。基于静止组织的多项式回归的校正性能可能会受到异常值(如缠绕或恒定流量)的影响。因此,我们提出了一种替代方法,即 M 估计样本一致性(MSAC),以拒绝异常值,并改进和完全自动化背景相位校正。

方法

MSAC 技术随机从图像中抽取小样本拟合多项式。通过多次试验,它旨在通过拒绝拟合的异常值并最小化剩余像素的残差,找到最佳一致的有效像素集。使用三阶多项式校正拟合对总共 118 个 2D 流动(97 个有缠绕)和 18 个 4D 流动数据集(14 个有缠绕)进行了 MSAC 对其少数参数的鲁棒性的研究和验证,这些数据是在 1.5T 和 3T 下采集的。背景相位与标准静止校正和幻影校正进行了比较。在 2D 流动中推导了肺/系统流量比,并进行了示例 4D 流动分析。

结果

MSAC 技术在一系列参数选择范围内具有鲁棒性,并且一套独特的参数适用于 2D 和 4D 流动。在 2D 流动中,与静止校正相比,MSAC 显著降低了相位误差(p=0.005),并且静止校正显示出比 MSAC 更大的肺/系统流量比误差。在 4D 流动中,MSAC 表现出与静止校正相似的性能。

结论

MSAC 方法为 2D 和 4D 流动数据提供了完全自动化的背景相位校正,并表现出比静止校正更好的鲁棒性,特别是在存在异常值的情况下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验