Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Republic of Ireland.
Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
Biomacromolecules. 2022 Sep 12;23(9):3875-3886. doi: 10.1021/acs.biomac.2c00699. Epub 2022 Aug 2.
Antibody therapy generally requires parenteral injection to attain the required bioavailability and pharmacokinetics, but improved formulations may slow enzymatic degradation of the antibody in the gastrointestinal tract, permitting the use of noninvasive oral delivery. Rationally designed carrier materials can potentially improve therapeutic activity both by shielding fragile biopharmaceuticals from proteolytic degradation and targeting specific receptors in vivo. One potentially useful class of protein carriers is block copolyelectrolytes, one polyelectrolyte plus one neutral hydrophilic polymer block, that self-assemble into stable micelles, providing a simple and biocompatible nanocapsule separating the protein from the outer medium. Here, we develop and implement an integrated mesoscale model to design molecular structures for block copolyelectrolyte nanocapsules predicted to protect Trastuzumab, an antibody used to treat breast cancer, in the low pH gastrointestinal tract and to selectively release this antibody in the more neutral intestinal environment. The simulations show a tightly packed self-assembled core-shell structure at pH = 3 that is ruptured and dynamically reassembled into a weaker structure at pH = 7. Our model identifies that the designed block copolyelectrolyte characteristics, such as block length ratio, can control the level of drug protection and release in vivo, providing simple design rules for engineering polyelectrolyte-based formulations that may allow oral administration of targeted antibody chemotherapies.
抗体疗法通常需要通过注射来达到所需的生物利用度和药代动力学,但改良配方可能会减缓抗体在胃肠道中的酶降解速度,从而允许使用非侵入性的口服给药。合理设计的载体材料可以通过保护脆弱的生物制药免受蛋白水解降解,并在体内靶向特定受体,从而潜在地提高治疗活性。一类潜在有用的蛋白质载体是嵌段共聚电解质,即一种聚电解质加上一种中性亲水性聚合物嵌段,它们自组装成稳定的胶束,提供了一种简单且生物相容的纳米胶囊,将蛋白质与外部介质隔开。在这里,我们开发并实施了一个集成的介观模型,用于设计预测能够在低 pH 值胃肠道中保护用于治疗乳腺癌的曲妥珠单抗的嵌段共聚物纳米胶囊的分子结构,并在更中性的肠道环境中选择性释放这种抗体。模拟结果表明,在 pH = 3 时,形成紧密堆积的自组装核壳结构,在 pH = 7 时,该结构会破裂并重新动态组装成较弱的结构。我们的模型表明,设计的嵌段共聚物特性,如嵌段长度比,可以控制体内药物的保护和释放水平,为基于聚电解质的制剂工程提供了简单的设计规则,这可能允许口服给予靶向抗体化疗药物。