Suppr超能文献

脱木质素木材气凝胶作为涂覆有定向壳聚糖 - 环糊精共聚物的支架用于去除微囊藻毒素 - LR。

Delignified wood aerogels as scaffolds coated with an oriented chitosan-cyclodextrin co-polymer for removal of microcystin-LR.

作者信息

Gomez-Maldonado Diego, Reynolds Autumn Marie, Burnett Daniel J, Babu R Jayachandra, Waters Matthew N, Peresin Maria S

机构信息

Forest Products Development Center, College of Forestry, Wildlife and Environment, Auburn University Auburn AL 36849 USA

Surface Measurement Systems Allentown PA 18103 USA.

出版信息

RSC Adv. 2022 Jul 13;12(31):20330-20339. doi: 10.1039/d2ra03556a. eCollection 2022 Jul 6.

Abstract

Nano-porous aerogels are an advantageous approach to produce low-density materials with high surface area, particularly when using biobased materials. Frequently, most biobased aerogels are synthesized through a bottom-up approach, which requires high energy inputs to break and rebuild the raw materials, and for elimination of water. To curb this, this work focused on generating aerogels by a top-down approach through the delignification of a wood substrate while eliminating water by solvent exchange. To diversify the surface chemistry for use in water treatment, the delignified wood-nanowood-was coated with a chitosan-cyclodextrin co-polymer and tested in the capture of microcystin-LR. The generated nanowood structure had 75% porosity after coating, with up to 339% water swelling and an adsorption capacity of 0.12 mg g of the microcystin. This top-down technique enables the generation of low-cost aerogels by reducing steps, using a biobased self-assembled coating with hydrophobic active sites, and avoiding costly energetic input.

摘要

纳米多孔气凝胶是生产具有高比表面积的低密度材料的一种有效方法,尤其是在使用生物基材料时。通常,大多数生物基气凝胶是通过自下而上的方法合成的,这需要高能量输入来分解和重建原材料以及去除水分。为了克服这一问题,这项工作专注于通过自上而下的方法,即对木材基材进行脱木质素处理,同时通过溶剂交换去除水分来制备气凝胶。为了使表面化学多样化以用于水处理,将脱木质素的木材——纳米木材——用壳聚糖-环糊精共聚物进行包覆,并测试其对微囊藻毒素-LR的捕获能力。包覆后生成的纳米木材结构孔隙率为75%,水膨胀率高达339%,对微囊藻毒素的吸附容量为0.12毫克/克。这种自上而下的技术通过减少步骤、使用具有疏水活性位点的生物基自组装涂层以及避免昂贵的能量输入,能够制备低成本的气凝胶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/9278526/d6b874774d2f/d2ra03556a-f1.jpg

相似文献

1
Delignified wood aerogels as scaffolds coated with an oriented chitosan-cyclodextrin co-polymer for removal of microcystin-LR.
RSC Adv. 2022 Jul 13;12(31):20330-20339. doi: 10.1039/d2ra03556a. eCollection 2022 Jul 6.
2
Top-Down Approach Making Anisotropic Cellulose Aerogels as Universal Substrates for Multifunctionalization.
ACS Nano. 2020 Jun 23;14(6):7111-7120. doi: 10.1021/acsnano.0c01888. Epub 2020 May 22.
3
Wood Nanotechnology for Strong, Mesoporous, and Hydrophobic Biocomposites for Selective Separation of Oil/Water Mixtures.
ACS Nano. 2018 Mar 27;12(3):2222-2230. doi: 10.1021/acsnano.8b00005. Epub 2018 Feb 9.
4
Aerogels from Chitosan Solutions in Ionic Liquids.
Polymers (Basel). 2017 Dec 16;9(12):722. doi: 10.3390/polym9120722.
5
Separation of Microcystin-LR by Cyclodextrin-Functionalized Magnetic Composite of Colloidal Graphene and Porous Silica.
ACS Appl Mater Interfaces. 2015 May 13;7(18):9911-9. doi: 10.1021/acsami.5b02038. Epub 2015 May 1.
6
Preparation and Characterization of Chitosan-Coated Pectin Aerogels: Case Study.
Molecules. 2020 Mar 6;25(5):1187. doi: 10.3390/molecules25051187.
7
8
Photodegradation of microcystin-LR using graphene-TiO/sodium alginate aerogels.
Carbohydr Polym. 2018 Nov 1;199:109-118. doi: 10.1016/j.carbpol.2018.07.007. Epub 2018 Jul 6.
9
Mesoporosity of Delignified Wood Investigated by Water Vapor Sorption.
ACS Omega. 2019 Jul 22;4(7):12425-12431. doi: 10.1021/acsomega.9b00862. eCollection 2019 Jul 31.

引用本文的文献

本文引用的文献

1
A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers.
Nanomaterials (Basel). 2020 Oct 27;10(11):2142. doi: 10.3390/nano10112142.
2
Engineered Multilayer Microcapsules Based on Polysaccharides Nanomaterials.
Molecules. 2020 Sep 25;25(19):4420. doi: 10.3390/molecules25194420.
3
Advanced Nanowood Materials for the Water-Energy Nexus.
Adv Mater. 2021 Jul;33(28):e2001240. doi: 10.1002/adma.202001240. Epub 2020 Jul 29.
4
Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels.
Adv Mater. 2021 Jul;33(28):e2001085. doi: 10.1002/adma.202001085. Epub 2020 Jun 14.
5
Functional Materials from Nanocellulose: Utilizing Structure-Property Relationships in Bottom-Up Fabrication.
Adv Mater. 2021 Jul;33(28):e2000657. doi: 10.1002/adma.202000657. Epub 2020 Apr 8.
6
Cellulose-Cyclodextrin Co-Polymer for the Removal of Cyanotoxins on Water Sources.
Polymers (Basel). 2019 Dec 12;11(12):2075. doi: 10.3390/polym11122075.
7
Quantifying the surface properties of enzymatically-made porous starches by using a surface energy analyzer.
Carbohydr Polym. 2018 Nov 15;200:543-551. doi: 10.1016/j.carbpol.2018.08.035. Epub 2018 Aug 10.
8
Cyclodextrin-Functionalized Fiber Yarns Spun from Deep Eutectic Cellulose Solutions for Nonspecific Hormone Capture in Aqueous Matrices.
Biomacromolecules. 2018 Feb 12;19(2):652-661. doi: 10.1021/acs.biomac.7b01765. Epub 2018 Feb 2.
9
Lignin-Retaining Transparent Wood.
ChemSusChem. 2017 Sep 11;10(17):3445-3451. doi: 10.1002/cssc.201701089. Epub 2017 Aug 9.
10
Highly Anisotropic, Highly Transparent Wood Composites.
Adv Mater. 2016 Jul;28(26):5181-7. doi: 10.1002/adma.201600427. Epub 2016 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验