Centre for Glycosciences, Keele University, Keele ST5 5BG, UK.
School of Life Sciences, Keele University, Keele ST5 5BG, UK.
J R Soc Interface. 2022 Aug;19(193):20220391. doi: 10.1098/rsif.2022.0391. Epub 2022 Aug 3.
Phosphate and sulfate groups are integral to energy metabolism and introduce negative charges into biological macromolecules. One purpose of such modifications is to elicit precise binding/activation of protein partners. The physico-chemical properties of the two groups, while superficially similar, differ in one important respect-the valency of the central (phosphorus or sulfur) atom. This dictates the distinct properties of their respective esters, di-esters and hence their charges, interactions with metal ions and their solubility. These, in turn, determine the contrasting roles for which each group has evolved in biological systems. Biosynthetic links exist between the two modifications; the sulfate donor 3'-phosphoadenosine-5'-phosphosulfate being formed from adenosine triphosphate (ATP) and adenosine phosphosulfate, while the latter is generated from sulfate anions and ATP. Furthermore, phosphorylation, by a xylosyl kinase (Fam20B, glycosaminoglycan xylosylkinase) of the xylose residue of the tetrasaccharide linker region that connects nascent glycosaminoglycan (GAG) chains to their parent proteoglycans, substantially accelerates their biosynthesis. Following observations that GAG chains can enter the cell nucleus, it is hypothesized that sulfated GAGs could influence events in the nucleus, which would complete a feedback loop uniting the complementary anionic modifications of phosphorylation and sulfation through complex, inter-connected signalling networks and warrants further exploration.
磷酸基和硫酸基是能量代谢的组成部分,并为生物大分子引入负电荷。这些修饰的目的之一是引起蛋白质伴侣的精确结合/激活。这两个基团的物理化学性质虽然表面上相似,但在一个重要方面有所不同——中心(磷或硫)原子的价态。这决定了它们各自的酯、二酯的独特性质,进而决定了它们的电荷、与金属离子的相互作用及其溶解度。这些反过来又决定了每个基团在生物系统中进化出的截然不同的作用。两种修饰之间存在生物合成联系;硫酸供体 3'-磷酸腺苷-5'-磷酸硫酸是由三磷酸腺苷(ATP)和腺苷磷酸硫酸形成的,而后者是由硫酸根阴离子和 ATP 生成的。此外,通过木糖激酶(Fam20B,糖胺聚糖木糖激酶)对连接新生糖胺聚糖(GAG)链与其亲本蛋白聚糖的四糖连接区的木糖残基进行磷酸化,大大加速了 GAG 链的生物合成。在观察到 GAG 链可以进入细胞核后,人们假设硫酸化 GAG 可以影响核内事件,这将通过复杂的、相互连接的信号网络完成将磷酸化和硫酸化的互补阴离子修饰结合在一起的反馈循环,值得进一步探索。