Suppr超能文献

时间尺度改变了宿主密度与感染风险之间的关系。

Timescale reverses the relationship between host density and infection risk.

机构信息

Coastal and Marine Laboratory, Florida State University, St. Teresa, FL 32358, USA.

Program in Ecology, Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Proc Biol Sci. 2022 Aug 10;289(1980):20221106. doi: 10.1098/rspb.2022.1106. Epub 2022 Aug 3.

Abstract

Host density shapes infection risk through two opposing phenomena. First, when infective stages are subdivided among multiple hosts, greater host densities decrease infection risk through 'safety in numbers'. Hosts, however, represent resources for parasites, and greater host availability also fuels parasite reproduction. Hence, host density increases infection risk through 'density-dependent transmission'. Theory proposes that these phenomena are not disparate outcomes but occur over different timescales. That is, higher host densities may reduce short-term infection risk, but because they support parasite reproduction, may increase long-term risk. We tested this theory in a zooplankton-disease system with laboratory experiments and field observations. Supporting theory, we found that negative density-risk relationships (safety in numbers) sometimes emerged over short timescales, but these relationships reversed to 'density-dependent transmission' within two generations. By allowing parasite numerical responses to play out, time can shift the consequences of host density, from reduced immediate risk to amplified future risk.

摘要

宿主密度通过两种相反的现象来影响感染风险。首先,当感染阶段分散在多个宿主中时,更高的宿主密度通过“群体安全”降低感染风险。然而,宿主是寄生虫的资源,更多的宿主可用性也会刺激寄生虫繁殖。因此,宿主密度通过“密度依赖传播”增加感染风险。理论提出,这些现象不是不同的结果,而是发生在不同的时间尺度上。也就是说,更高的宿主密度可能会降低短期感染风险,但由于它们支持寄生虫繁殖,可能会增加长期风险。我们在一个浮游动物-疾病系统中通过实验室实验和野外观察来检验这一理论。支持这一理论,我们发现,短期有时会出现负密度风险关系(群体安全),但这种关系会在两代内转变为“密度依赖传播”。通过允许寄生虫的数量反应发挥作用,时间可以改变宿主密度的后果,从减少即时风险转变为放大未来风险。

相似文献

1
Timescale reverses the relationship between host density and infection risk.
Proc Biol Sci. 2022 Aug 10;289(1980):20221106. doi: 10.1098/rspb.2022.1106. Epub 2022 Aug 3.
2
Complex Daphnia interactions with parasites and competitors.
Math Biosci. 2014 Dec;258:148-61. doi: 10.1016/j.mbs.2014.10.002. Epub 2014 Oct 22.
3
Epidemic size determines population-level effects of fungal parasites on Daphnia hosts.
Oecologia. 2011 Jul;166(3):833-42. doi: 10.1007/s00442-011-1905-4. Epub 2011 Feb 9.
5
Host density increases parasite recruitment but decreases host risk in a snail-trematode system.
Ecology. 2017 Aug;98(8):2029-2038. doi: 10.1002/ecy.1905. Epub 2017 Jul 6.
7
Resources, key traits and the size of fungal epidemics in Daphnia populations.
J Anim Ecol. 2015 Jul;84(4):1010-7. doi: 10.1111/1365-2656.12363. Epub 2015 Mar 21.
9
Virulent Disease Epidemics Can Increase Host Density by Depressing Foraging of Hosts.
Am Nat. 2022 Jan;199(1):75-90. doi: 10.1086/717175. Epub 2021 Nov 23.
10
Sequential infection of by a gut microsporidium followed by a haemolymph yeast decreases transmission of both parasites.
Parasitology. 2021 Nov;148(13):1566-1577. doi: 10.1017/S0031182021001384. Epub 2021 Aug 10.

引用本文的文献

1
Crowding reduces per-capita parasite infection risk in a butterfly host.
Proc Biol Sci. 2025 Sep;292(2054):20251110. doi: 10.1098/rspb.2025.1110. Epub 2025 Sep 10.
2
Local and global density have distinct and parasite-dependent effects on infection in wild sheep.
Parasitology. 2025 Jun;152(7):715-723. doi: 10.1017/S0031182025100383.
3
Taking cues from ecological and evolutionary theories to expand the landscape of disgust.
Proc Biol Sci. 2024 Dec;291(2036):20241919. doi: 10.1098/rspb.2024.1919. Epub 2024 Dec 4.

本文引用的文献

1
Parasite exposure and host susceptibility jointly drive the emergence of epidemics.
Ecology. 2021 Feb;102(2):e03245. doi: 10.1002/ecy.3245. Epub 2020 Dec 27.
2
Parasite prevalence in intermediate hosts increases with waterbody age and abundance of final hosts.
Oecologia. 2020 Feb;192(2):311-321. doi: 10.1007/s00442-020-04600-4. Epub 2020 Feb 1.
3
Genotypic variation in parasite avoidance behaviour and other mechanistic, nonlinear components of transmission.
Proc Biol Sci. 2019 Nov 20;286(1915):20192164. doi: 10.1098/rspb.2019.2164.
4
Starving the Enemy? Feeding Behavior Shapes Host-Parasite Interactions.
Trends Ecol Evol. 2020 Jan;35(1):68-80. doi: 10.1016/j.tree.2019.08.004. Epub 2019 Oct 8.
5
Indirect effects in a planktonic disease system.
Theor Popul Biol. 2019 Dec;130:132-142. doi: 10.1016/j.tpb.2019.07.009. Epub 2019 Jul 15.
6
Parasite-Mediated Anorexia and Nutrition Modulate Virulence Evolution.
Integr Comp Biol. 2019 Nov 1;59(5):1264-1274. doi: 10.1093/icb/icz100.
7
Variation in Immune Defense Shapes Disease Outcomes in Laboratory and Wild Daphnia.
Integr Comp Biol. 2019 Nov 1;59(5):1203-1219. doi: 10.1093/icb/icz079.
8
Within-host complexity of a plankton-parasite interaction.
Ecology. 2018 Dec;99(12):2864-2867. doi: 10.1002/ecy.2483. Epub 2018 Sep 28.
9
Ecological and Evolutionary Consequences of Parasite Avoidance.
Trends Ecol Evol. 2018 Aug;33(8):619-632. doi: 10.1016/j.tree.2018.05.001. Epub 2018 May 26.
10
A landscape of disgust.
Science. 2018 Mar 16;359(6381):1213-1214. doi: 10.1126/science.aas8694.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验