Heart Center and Institute of Pediatrics (W.C., D.X., C.Z., R.L., Y.L., Y.Z., W.D., Q.W., D.W., J.G., J.W., J.D.), Guangzhou Women and Children's Medical Center, Guangzhou Medical University, China.
Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai (D.X.).
Circ Res. 2022 Aug 19;131(5):456-472. doi: 10.1161/CIRCRESAHA.122.321054. Epub 2022 Aug 3.
Ischemic heart disease is a major global public health challenge, and its functional outcomes remain poor. Lysine crotonylation (Kcr) was recently identified as a post-translational histone modification that robustly indicates active promoters. However, the role of Kcr in myocardial injury is unknown. In this study, we aimed to clarify the pathophysiological significance of Kcr in cardiac injury and explore the underlying mechanism.
We investigated the dynamic change of both the Kcr sites and protein level in left ventricular tissues at 2 time points following sham or cardiac ischemia-reperfusion injury, followed by liquid chromatography-coupled tandem mass tag mass spectrometry. After validation of the enriched protein Kcr by immunoprecipitation and Western blot, the function and mechanism of specific Kcr sites were further investigated in vitro and in vivo by gain- or loss-of-function mutations targeting Kcr sites of selected proteins.
We found that cardiac ischemia-reperfusion injury triggers preferential Kcr of proteins required for cardiomyocyte contractility, including mitochondrial and cytoskeleton proteins, which occurs largely independently of protein-level changes in the same proteins. Those exhibiting Kcr changes were associated not only with disruption of cardiomyocyte mitochondrial, sarcomere architecture, and gap junction but also with cardiomyocyte autophagy and apoptosis. Modulating site-specific Kcr of selected mitochondrial protein IDH3a (isocitrate dehydrogenase 3 [NAD+] alpha) at K199 and cytoskeletal protein TPM1 (tropomyosin alpha-1 chain) at K28/29 or enhancing general Kcr via sodium crotonate provision not only protects cardiomyocyte from apoptosis by inhibiting BNIP3 (Bcl-2 adenovirus E18 19-kDa-interacting protein 3)-mediated mitophagy or cytoskeleton structure rearrangement but also preserves postinjury myocardial function by inhibiting fibrosis and apoptosis.
Our results indicate that Kcr modulation is a key response of cardiomyocytes to ischemia-reperfusion injury and may represent a novel therapeutic target in the context of ischemic heart disease.
缺血性心脏病是一个主要的全球公共卫生挑战,其功能结果仍然很差。赖氨酸丁烯酰化(Kcr)最近被确定为一种翻译后组蛋白修饰,它可以强烈地指示活跃的启动子。然而,Kcr 在心肌损伤中的作用尚不清楚。在这项研究中,我们旨在阐明 Kcr 在心肌损伤中的病理生理意义,并探讨其潜在机制。
我们研究了假手术或心脏缺血再灌注损伤后 2 个时间点左心室组织中 Kcr 位点和蛋白质水平的动态变化,随后进行液相色谱-串联质谱标签质谱分析。通过免疫沉淀和 Western blot 验证富集的 Kcr 蛋白后,通过针对选定蛋白质的 Kcr 位点的获得或丧失功能突变,进一步在体外和体内研究特定 Kcr 位点的功能和机制。
我们发现心脏缺血再灌注损伤触发了对心肌收缩力所需蛋白质的优先 Kcr,包括线粒体和细胞骨架蛋白,这在很大程度上独立于同一蛋白质的蛋白质水平变化。那些表现出 Kcr 变化的蛋白质不仅与破坏心肌细胞线粒体、肌节结构和间隙连接有关,而且与心肌细胞自噬和凋亡有关。调节选定线粒体蛋白 IDH3a(异柠檬酸脱氢酶 3 [NAD+] alpha)在 K199 处和细胞骨架蛋白 TPM1(原肌球蛋白 alpha-1 链)在 K28/29 处的特异性 Kcr 或通过提供琥珀酸钠增强一般 Kcr,不仅通过抑制 BNIP3(Bcl-2 腺病毒 E18 19kDa 相互作用蛋白 3)介导的细胞自噬或细胞骨架结构重排来保护心肌细胞免于凋亡,而且通过抑制纤维化和凋亡来保护损伤后的心肌功能。
我们的结果表明,Kcr 调节是心肌细胞对缺血再灌注损伤的关键反应,可能代表缺血性心脏病治疗的新靶点。