Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, Republic of China.
J Mater Chem B. 2022 Aug 17;10(32):6228-6236. doi: 10.1039/d2tb01224c.
Development of photosensitizers (PSs) featuring type-I reactive oxygen species (ROS) with aggregation-induced emission (AIE) properties is a judicious approach to overcome the deficit of conventional photodynamic therapy (PDT). However, it remains a challenge to design AIE-active type-I ROS PSs using a simple theranostic scaffold paired with a delicate balance between intramolecular charge transfer (ICT) and large spin-orbit coupling (SOC) features to facilitate intersystem crossing (ISC) and hence to intensify triplet excitons for type-I ROS generation as well as to improve optical properties for the desired biomedical applications. In this work, a rationally designed series of PSs based on C-6-substituted tetraphenylethylene-fused benzothiazole-coumarin scaffolds, named TPE-nCUMs, were synthesized a fused-ring-electron-acceptor (FREA) strategy, endowed with AIE properties in aqueous solution and thus self-monitoring type-I ROS generation under white-light irradiation to study the effects of diverse ICT and SOC potentials on their photochemical and optical properties. Both experimental and theoretical results revealed that the concomitantly increasing strengths of both ICT and SOC features promote type-I ROS generation by TPE-nCUMs. The key role of the SOC-promoting carbonyl group towards the ROS generation ability of TPE-nCUMs was then examined. Among TPE-nCUMs, gem-2OMe-TPE-2CUM displayed highly efficient type-I ROS generation. Importantly, gem-OMe-TPE-1CUM acts as a fluorescent indicator in HeLa cells (), revealing its excellent diffusion capability in both lysosomal and mitochondrial organelles with low dark toxicity, high cytotoxicity under white-light and remarkable PDT efficiency. Our study has thus elucidated a rationally designed strategy at the molecular level to fine-tune ICT and SOC features for the advance of AIE-active type-I ROS PSs, opening a new avenue for cancer treatment and image-guided therapy.
发展具有聚集诱导发射(AIE)特性的 I 型活性氧(ROS)的光敏剂(PS)是克服传统光动力疗法(PDT)缺陷的明智方法。然而,设计具有 AIE 活性的 I 型 ROS PS 仍然是一个挑战,需要使用简单的治疗支架,并在分子内电荷转移(ICT)和大自旋轨道耦合(SOC)特性之间达到精细平衡,以促进系间窜越(ISC),从而增强三重态激子以产生 I 型 ROS,并改善光学性质以满足所需的生物医学应用。在这项工作中,我们设计了一系列基于 C-6 取代的四苯乙烯稠合苯并噻唑-香豆素骨架的 PS,命名为 TPE-nCUMs,采用稠合环电子受体(FREA)策略,在水溶液中具有 AIE 性质,因此可以在白光照射下自我监测 I 型 ROS 的产生,以研究不同 ICT 和 SOC 潜力对其光化学和光学性质的影响。实验和理论结果均表明,ICT 和 SOC 特征的协同增强促进了 TPE-nCUMs 产生 I 型 ROS。然后研究了羰基对 TPE-nCUMs 产生 ROS 能力的关键作用。在 TPE-nCUMs 中,gem-2OMe-TPE-2CUM 表现出高效的 I 型 ROS 生成。重要的是,gem-OMe-TPE-1CUM 可作为 HeLa 细胞中的荧光指示剂(),显示其在溶酶体和线粒体细胞器中具有良好的扩散能力,暗毒性低,白光下细胞毒性高,PDT 效率显著。因此,我们的研究从分子水平阐明了一种合理的设计策略,用于精细调节 ICT 和 SOC 特性,以推进 AIE 活性的 I 型 ROS PS 的发展,为癌症治疗和图像引导治疗开辟了新途径。