Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden.
Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom.
J Chem Inf Model. 2022 Aug 22;62(16):3832-3843. doi: 10.1021/acs.jcim.2c00644. Epub 2022 Aug 3.
ROS1 rearrangements account for 1-2% of non-small cell lung cancer patients, yet there are no specifically designed, selective ROS1 therapies in the clinic. Previous knowledge of potent ROS1 inhibitors with selectivity over TrkA, a selected antitarget, enabled virtual screening as a hit finding approach in this project. The ligand-based virtual screening was focused on identifying molecules with a similar 3D shape and pharmacophore to the known actives. To that end, we turned to the AstraZeneca virtual library, estimated to cover 10 synthesizable make-on-demand molecules. We used cloud computing-enabled FastROCS technology to search the enumerated 10 subset of the full virtual space. A small number of specific libraries were prioritized based on the compound properties and a medicinal chemistry assessment and further enumerated with available building blocks. Following the docking evaluation to the ROS1 structure, the most promising hits were synthesized and tested, resulting in the identification of several potent and selective series. The best among them gave a nanomolar ROS1 inhibitor with over 1000-fold selectivity over TrkA and, from the preliminary established SAR, these have the potential to be further optimized. Our prospective study describes how conceptually simple shape-matching approaches can identify potent and selective compounds by searching ultralarge virtual libraries, demonstrating the applicability of such workflows and their importance in early drug discovery.
ROS1 重排约占非小细胞肺癌患者的 1-2%,但目前临床上尚无专门针对 ROS1 的靶向治疗药物。我们先前已经鉴定出对 TrkA (一种选择的拮抗靶标)具有选择性的有效 ROS1 抑制剂,这使得虚拟筛选成为该项目中发现先导化合物的一种方法。基于配体的虚拟筛选主要集中在识别与已知活性物质具有相似 3D 形状和药效团的分子。为此,我们转向阿斯利康的虚拟库,该库估计包含 10 个可合成的按需分子。我们使用云计算支持的 FastROCS 技术搜索已枚举的 10 个虚拟空间子集。根据化合物性质和药物化学评估对少数特定库进行优先级排序,并使用可用构建块进一步枚举。在对 ROS1 结构进行对接评估后,对最有前途的化合物进行了合成和测试,从而鉴定出了几个具有潜力的、高选择性的系列。其中最好的化合物对 ROS1 的抑制活性达到纳摩尔级,对 TrkA 的选择性超过 1000 倍,并且根据初步建立的 SAR,这些化合物具有进一步优化的潜力。我们的前瞻性研究描述了概念上简单的形状匹配方法如何通过搜索超大虚拟库来识别有效且选择性的化合物,证明了这种工作流程的适用性及其在早期药物发现中的重要性。