Wang Xianli, Jahanbazi Forough, Wei Jialiang, Segre Carlo U, Chen Wei, Mao Yuanbing
Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States.
Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States.
ACS Appl Mater Interfaces. 2022 Aug 17;14(32):36834-36844. doi: 10.1021/acsami.2c09361. Epub 2022 Aug 3.
Trivalent bismuth is a popular main group ion showing versatile luminescent behaviors in a broad spectral range from ultraviolet to visible, but barely in the near-infrared (NIR) region. In this study, we have observed unexpected NIR emission at ∼744 nm in a Bi-doped pyrochlore, YTiO (YTOB). Our first-principles electronic structure calculation and analysis of the Bi local structure via extended X-ray absorption fine structure indicate that only Bi species appears in YTOB and it has a similar local environment to that of Y. The NIR emission is assigned to a Ti → Bi metal-to-metal charge transfer process. Moreover, we have demonstrated dual-mode luminescence thermometry based on the luminescence intensity ratio (LIR) and lifetime (τ) in 0.5% Bi and 0.5% Pr co-doped YTiO (YTOB0.5P0.5). It exhibits high thermometric sensitivity simultaneously in the cryogenic temperature range from 78 to 298 K based on τ of the NIR emission of Bi at 748 nm and in the temperature range of 278-378 K based on the LIR of Bi to Pr emissions (/). As a novel LIR-τ dual-mode thermometric material over a wide temperature range, the maximum relative sensitivities of the YTOB0.5P0.5 reach 3.53% K at 298 K from the τ mode and 3.52% K at 318 K based on the LIR mode. The dual-mode luminescence thermometry with high responsivity from our Bi-based pyrochlore YTiO phosphor opens a new avenue for more luminescent materials toward multi-mode thermometry applied in complex temperature-sensing conditions.
三价铋是一种常见的主族离子,在从紫外到可见光的宽光谱范围内表现出多样的发光行为,但在近红外(NIR)区域几乎没有。在本研究中,我们在掺铋的烧绿石YTiO(YTOB)中观察到了约744 nm处意外的近红外发射。我们通过第一性原理电子结构计算以及基于扩展X射线吸收精细结构对铋的局部结构进行分析,结果表明YTOB中仅存在铋物种,且其局部环境与钇的相似。该近红外发射归因于Ti→Bi的金属间电荷转移过程。此外,我们在0.5%铋和0.5%镨共掺杂的YTiO(YTOB0.5P0.5)中基于发光强度比(LIR)和寿命(τ)展示了双模式发光测温。基于748 nm处铋的近红外发射的τ,它在78至298 K的低温范围内同时表现出高测温灵敏度;基于铋到镨发射的LIR(/),它在278 - 378 K的温度范围内也表现出高测温灵敏度。作为一种在宽温度范围内新型的LIR - τ双模式测温材料,YTOB0.5P0.5的最大相对灵敏度在298 K时基于τ模式达到3.53% K,在318 K时基于LIR模式达到3.52% K。我们基于铋基烧绿石YTiO荧光粉的具有高响应性的双模式发光测温为更多发光材料在复杂温度传感条件下应用于多模式测温开辟了一条新途径。