National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, PR China.
Biochimie. 2022 Nov;202:190-205. doi: 10.1016/j.biochi.2022.07.013. Epub 2022 Jul 31.
With the development of epigenetic engineering tools for manipulating DNA methylation at the desired locus, the stable maintenance of targeted methylation status in edited cells after division poses a major obstacle. Transient methylation levels, along with the reversible inhibition of the desired genes, by some epigenetic editing techniques, limit their further application in functional and therapeutic studies of critical regulators in the cancer epigenome. In this study, we utilized CRISPR/Cas9-mediated the homology-directed repair (HDR) pathway following double-strand breaks (DSBs) information to target de novo methylation of the vital epigenetic biomarker, O-methylguanine-DNA methyltransferase (MGMT). Based on synthetic single and double stranded methylated repair templates, DNA methylation patterns can be incorporated into the endogenous MGMT gene. In addition, we observed upregulation of DNA methyltransferases (DNMTs) in edited HeLa cells. In particular, we employed an optimized method of using the DNA ligase IV inhibitor SCR7 to markedly enhance the insertion efficiency induced by the long methylated repair template, contributing to the induction of stable methylation alterations through epigenetic recombination after cell division. Additionally, our study confirmed that CRISPR/Cas9-mediated target methylation in a site-specific manner enabled the maintenance of gene silencing in vitro and in vivo. Collectively, we show that a combination of CRISPR/Cas9 components, SCR7 treatment, and the long methylated HDR template can enhance CRISPR/Cas9-directed epigenomic editing efficiency and further induce stable effects on methylation modifications and transcriptional suppression.
随着在所需基因座上操纵 DNA 甲基化的表观遗传工程工具的发展,编辑细胞在分裂后靶向甲基化状态的稳定维持成为一个主要障碍。一些表观遗传编辑技术会导致短暂的甲基化水平,并可逆地抑制所需基因,这限制了它们在癌症表观基因组中关键调控因子的功能和治疗研究中的进一步应用。在这项研究中,我们利用 CRISPR/Cas9 介导的双链断裂(DSBs)信息靶向同源定向修复(HDR)途径,对重要的表观生物标志物 O-甲基鸟嘌呤-DNA 甲基转移酶(MGMT)进行从头甲基化。基于合成的单链和双链甲基化修复模板,可以将 DNA 甲基化模式整合到内源性 MGMT 基因中。此外,我们观察到编辑后的 HeLa 细胞中 DNA 甲基转移酶(DNMTs)的上调。特别是,我们采用了一种优化的方法,使用 DNA 连接酶 IV 抑制剂 SCR7,显著提高了长甲基化修复模板诱导的插入效率,有助于通过细胞分裂后的表观遗传重组诱导稳定的甲基化改变。此外,我们的研究证实,CRISPR/Cas9 介导的靶向甲基化以特定的方式在体外和体内维持基因沉默。总之,我们表明,CRISPR/Cas9 组件、SCR7 处理和长甲基化 HDR 模板的组合可以增强 CRISPR/Cas9 指导的表观基因组编辑效率,并进一步诱导对甲基化修饰和转录抑制的稳定影响。