Légaré Katherine, Chardonnet Valentin, Bermúdez Macias Ivette, Hennes Marcel, Delaunay Renaud, Lassonde Philippe, Légaré François, Lambert Guillaume, Jal Emmanuelle, Vodungbo Boris
Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X1P7, Canada.
Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, 75005 Paris, France.
Rev Sci Instrum. 2022 Jul 1;93(7):073001. doi: 10.1063/5.0088610.
Instruments based on the magneto-optical Kerr effect are routinely used to probe surface magnetic properties. These tools rely on the characterization of the polarization state of reflected light from the sample to collect information on its magnetization. Here, we present a theoretical optimization of common setups based on the magneto-optical Kerr effect. A detection scheme based on a simple analyzer and photodetector and one made from a polarizing beam splitter and balanced photodetectors are considered. The effect of including a photoelastic modulator (PEM) and a lock-in amplifier to detect the signal at harmonics of the modulating frequency is studied. Jones formalism is used to derive general expressions that link the intensity of the measured signal to the magneto-optical Fresnel reflection coefficients for any orientation of the polarizing optical components. Optimal configurations are then defined as those that allow measuring the Kerr rotation and ellipticity while minimizing nonmagnetic contributions from the diagonal Fresnel coefficients in order to improve the signal-to-noise ratio (SNR). The expressions show that with the PEM, setups based on polarizing beam splitters inherently offer a twofold higher signal than commonly used analyzers, and the experimental results confirm that the SNR is improved by more than 150%. Furthermore, we find that while all proposed detection schemes measure Kerr effects, only those with polarizing beam splitters allow measuring the Kerr rotation directly when no modulator is included. This accommodates, for instance, time-resolved measurements at relatively low laser pulse repetition rates. Ultrafast demagnetization measurements are presented as an example of such applications.
基于磁光克尔效应的仪器通常用于探测表面磁特性。这些工具依靠对样品反射光偏振态的表征来收集其磁化信息。在此,我们提出了基于磁光克尔效应的常见设置的理论优化。考虑了基于简单分析仪和光电探测器的检测方案以及由偏振分束器和平衡光电探测器构成的检测方案。研究了加入光弹调制器(PEM)和锁相放大器以检测调制频率谐波处信号的效果。利用琼斯形式理论推导出通用表达式,该表达式将测量信号的强度与偏振光学元件任意取向的磁光菲涅耳反射系数联系起来。然后将最佳配置定义为那些能够测量克尔旋转和椭圆率,同时最小化来自对角菲涅耳系数的非磁性贡献以提高信噪比(SNR) 的配置。表达式表明,使用PEM时基于偏振分束器的设置固有地比常用分析仪提供高一倍 的信号,并且实验结果证实信噪比提高了超过150%。此外,我们发现虽然所有提出的检测方案都能测量克尔效应,但只有那些带有偏振分束器的方案在不包含调制器时能够直接测量克尔旋转。这适用于例如相对低激光脉冲重复率下的时间分辨测量。超快退磁测量作为此类应用的一个例子给出。