Suppr超能文献

优化肿瘤学中转译因子的缩放比例:从异种移植到 RECIST。

Optimized scaling of translational factors in oncology: from xenografts to RECIST.

机构信息

Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, 41288, Gothenburg, Sweden.

Department of Mathematical Sciences, Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden.

出版信息

Cancer Chemother Pharmacol. 2022 Sep;90(3):239-250. doi: 10.1007/s00280-022-04458-8. Epub 2022 Aug 3.

Abstract

PURPOSE

Tumor growth inhibition (TGI) models are regularly used to quantify the PK-PD relationship between drug concentration and in vivo efficacy in oncology. These models are typically calibrated with data from xenograft mice and before being used for clinical predictions, translational methods have to be applied. Currently, such methods are commonly based on replacing model components or scaling of model parameters. However, difficulties remain in how to accurately account for inter-species differences. Therefore, more research must be done before xenograft data can fully be utilized to predict clinical response.

METHOD

To contribute to this research, we have calibrated TGI models to xenograft data for three drug combinations using the nonlinear mixed effects framework. The models were translated by replacing mice exposure with human exposure and used to make predictions of clinical response. Furthermore, in search of a better way of translating these models, we estimated an optimal way of scaling model parameters given the available clinical data.

RESULTS

The predictions were compared with clinical data and we found that clinical efficacy was overestimated. The estimated optimal scaling factors were similar to a standard allometric scaling exponent of - 0.25.

CONCLUSIONS

We believe that given more data, our methodology could contribute to increasing the translational capabilities of TGI models. More specifically, an appropriate translational method could be developed for drugs with the same mechanism of action, which would allow for all preclinical data to be leveraged for new drugs of the same class. This would ensure that fewer clinically inefficacious drugs are tested in clinical trials.

摘要

目的

肿瘤生长抑制(TGI)模型常用于量化药物浓度与肿瘤学中体内疗效之间的 PK-PD 关系。这些模型通常通过异种移植小鼠的数据进行校准,并且在用于临床预测之前,必须应用转化方法。目前,此类方法通常基于替换模型组件或对模型参数进行缩放。然而,如何准确地解释种间差异仍然存在困难。因此,在异种移植数据能够充分用于预测临床反应之前,还需要进行更多的研究。

方法

为了促进这项研究,我们使用非线性混合效应框架,针对三种药物组合的异种移植数据对 TGI 模型进行了校准。通过用人体暴露代替小鼠暴露,对模型进行了翻译,并用于预测临床反应。此外,为了寻找更好的翻译这些模型的方法,我们在可用的临床数据基础上,估算了对模型参数进行最佳缩放的方法。

结果

将预测结果与临床数据进行了比较,我们发现临床疗效被高估了。估算的最佳缩放因子与标准的体表面积比例指数-0.25 相似。

结论

我们相信,随着更多数据的出现,我们的方法可以提高 TGI 模型的转化能力。更具体地说,可以为具有相同作用机制的药物开发适当的转化方法,从而可以利用相同类别新药的所有临床前数据。这将确保在临床试验中测试较少的临床无效药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2420/9402719/d3134faa6696/280_2022_4458_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验