Suppr超能文献

利用 PBPK/PD 模型对黑色素瘤中 MDM2 和 MEK 抑制剂协同组合的体外/体内转化:第三部分。

In Vitro/In Vivo Translation of Synergistic Combination of MDM2 and MEK Inhibitors in Melanoma Using PBPK/PD Modelling: Part III.

机构信息

Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.

Adamed Pharma S.A., Adamkiewicza 6a, 05-152 Czosnów, Poland.

出版信息

Int J Mol Sci. 2023 Jan 23;24(3):2239. doi: 10.3390/ijms24032239.

Abstract

The development of in vitro/in vivo translational methods and a clinical trial framework for synergistically acting drug combinations are needed to identify optimal therapeutic conditions with the most effective therapeutic strategies. We performed physiologically based pharmacokinetic-pharmacodynamic (PBPK/PD) modelling and virtual clinical trial simulations for siremadlin, trametinib, and their combination in a virtual representation of melanoma patients. In this study, we built PBPK/PD models based on data from in vitro absorption, distribution, metabolism, and excretion (ADME), and in vivo animals' pharmacokinetic-pharmacodynamic (PK/PD) and clinical data determined from the literature or estimated by the Simcyp simulator (version V21). The developed PBPK/PD models account for interactions between siremadlin and trametinib at the PK and PD levels. Interaction at the PK level was predicted at the absorption level based on findings from animal studies, whereas PD interaction was based on the in vitro cytotoxicity results. This approach, combined with virtual clinical trials, allowed for the estimation of PK/PD profiles, as well as melanoma patient characteristics in which this therapy may be noninferior to the dabrafenib and trametinib drug combination. PBPK/PD modelling, combined with virtual clinical trial simulation, can be a powerful tool that allows for proper estimation of the clinical effect of the above-mentioned anticancer drug combination based on the results of in vitro studies. This approach based on in vitro/in vivo extrapolation may help in the design of potential clinical trials using siremadlin and trametinib and provide a rationale for their use in patients with melanoma.

摘要

需要开发体外/体内转化方法和临床试验框架,以协同作用的药物组合来确定最佳治疗条件和最有效的治疗策略。我们在虚拟黑素瘤患者模型中对 siremadlin、trametinib 及其组合进行了基于生理学的药代动力学-药效学(PBPK/PD)建模和虚拟临床试验模拟。在这项研究中,我们根据来自体外吸收、分布、代谢和排泄(ADME)的数据以及来自文献或通过 Simcyp 模拟器(版本 V21)估算的体内动物药代动力学-药效学(PK/PD)和临床数据构建了 PBPK/PD 模型。开发的 PBPK/PD 模型考虑了 siremadlin 和 trametinib 在 PK 和 PD 水平上的相互作用。基于动物研究的结果,在 PK 水平上预测了吸收水平的相互作用,而 PD 相互作用则基于体外细胞毒性结果。这种方法与虚拟临床试验相结合,可用于估算 PK/PD 曲线以及可能对这种治疗具有非劣效性的黑素瘤患者特征,而这种治疗可能劣效于 dabrafenib 和 trametinib 药物组合。PBPK/PD 建模与虚拟临床试验模拟相结合,可以成为一种强大的工具,可根据体外研究结果正确估算上述抗癌药物组合的临床效果。这种基于体外/体内外推的方法有助于设计 siremadlin 和 trametinib 的潜在临床试验,并为其在黑素瘤患者中的应用提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83d/9917191/c7d549221d98/ijms-24-02239-g001.jpg

相似文献

9
Clinical Pharmacokinetic and Pharmacodynamic Considerations in the (Modern) Treatment of Melanoma.
Clin Pharmacokinet. 2019 Aug;58(8):1029-1043. doi: 10.1007/s40262-019-00753-5.
10
Physiologically based pharmacokinetic/pharmacodynamic modeling to evaluate the absorption of midazolam rectal gel.
Eur J Pharm Sci. 2021 Dec 1;167:106006. doi: 10.1016/j.ejps.2021.106006. Epub 2021 Sep 11.

引用本文的文献

1
Advancing Drug Safety in Drug Development: Bridging Computational Predictions for Enhanced Toxicity Prediction.
Chem Res Toxicol. 2024 Jun 17;37(6):827-849. doi: 10.1021/acs.chemrestox.3c00352. Epub 2024 May 17.
2

本文引用的文献

2
Melanoma metastasis: What role does melanin play? (Review).
Oncol Rep. 2022 Dec;48(6). doi: 10.3892/or.2022.8432. Epub 2022 Oct 25.
3
Optimized scaling of translational factors in oncology: from xenografts to RECIST.
Cancer Chemother Pharmacol. 2022 Sep;90(3):239-250. doi: 10.1007/s00280-022-04458-8. Epub 2022 Aug 3.
4
Drug Resistance in Colorectal Cancer: From Mechanism to Clinic.
Cancers (Basel). 2022 Jun 14;14(12):2928. doi: 10.3390/cancers14122928.
6
Patient-derived xenograft models in hepatopancreatobiliary cancer.
Cancer Cell Int. 2022 Jan 28;22(1):41. doi: 10.1186/s12935-022-02454-9.
9
Drug resistance and combating drug resistance in cancer.
Cancer Drug Resist. 2019;2(2):141-160. doi: 10.20517/cdr.2019.10. Epub 2019 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验