Suppr超能文献

利用综合特征选择和支持向量机对低级别胶质瘤进行分型和分级。

Subtyping and grading of lower-grade gliomas using integrated feature selection and support vector machine.

机构信息

Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.

Department of Computer Science and Engineering, Bankura Unnayani Institute of Engineering, Bankura 722146, West Bengal, India.

出版信息

Brief Funct Genomics. 2022 Sep 16;21(5):408-421. doi: 10.1093/bfgp/elac025.

Abstract

Classifying lower-grade gliomas (LGGs) is a crucial step for accurate therapeutic intervention. The histopathological classification of various subtypes of LGG, including astrocytoma, oligodendroglioma and oligoastrocytoma, suffers from intraobserver and interobserver variability leading to inaccurate classification and greater risk to patient health. We designed an efficient machine learning-based classification framework to diagnose LGG subtypes and grades using transcriptome data. First, we developed an integrated feature selection method based on correlation and support vector machine (SVM) recursive feature elimination. Then, implementation of the SVM classifier achieved superior accuracy compared with other machine learning frameworks. Most importantly, we found that the accuracy of subtype classification is always high (>90%) in a specific grade rather than in mixed grade (~80%) cancer. Differential co-expression analysis revealed higher heterogeneity in mixed grade cancer, resulting in reduced prediction accuracy. Our findings suggest that it is necessary to identify cancer grades and subtypes to attain a higher classification accuracy. Our six-class classification model efficiently predicts the grades and subtypes with an average accuracy of 91% (±0.02). Furthermore, we identify several predictive biomarkers using co-expression, gene set enrichment and survival analysis, indicating our framework is biologically interpretable and can potentially support the clinician.

摘要

对低级别胶质瘤(LGG)进行分类是进行准确治疗干预的关键步骤。各种 LGG 亚型(包括星形细胞瘤、少突胶质细胞瘤和少突星形细胞瘤)的组织病理学分类存在观察者内和观察者间的变异性,导致分类不准确,增加了患者健康风险。我们设计了一种基于机器学习的分类框架,使用转录组数据诊断 LGG 亚型和分级。首先,我们开发了一种基于相关性和支持向量机(SVM)递归特征消除的综合特征选择方法。然后,SVM 分类器的实现与其他机器学习框架相比具有更高的准确性。最重要的是,我们发现特定分级的亚型分类准确性始终很高(>90%),而混合分级癌症(~80%)的准确性则较低。差异共表达分析表明,混合分级癌症的异质性更高,导致预测准确性降低。我们的研究结果表明,有必要识别癌症的分级和亚型,以提高分类准确性。我们的六类分类模型能够高效地预测分级和亚型,平均准确率为 91%(±0.02)。此外,我们还通过共表达、基因集富集和生存分析鉴定了一些预测性生物标志物,表明我们的框架具有生物学可解释性,并可能为临床医生提供支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验