Suppr超能文献

揭示胶质瘤的亚型特异性疾病模块及药物反应预测模型的开发。

Uncovering the subtype-specific disease module and the development of drug response prediction models for glioma.

作者信息

Munquad Sana, Das Asim Bikas

机构信息

Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, Telangana, India.

出版信息

Heliyon. 2024 Mar 1;10(5):e27190. doi: 10.1016/j.heliyon.2024.e27190. eCollection 2024 Mar 15.

Abstract

The poor prognosis of glioma patients brought attention to the need for effective therapeutic approaches for precision therapy. Here, we deployed algorithms relying on network medicine and artificial intelligence to design the framework for subtype-specific target identification and drug response prediction in glioma. We identified the driver mutations that were differentially expressed in each subtype of lower-grade glioma and glioblastoma multiforme and were linked to cancer-specific processes. Driver mutations that were differentially expressed were also subjected to subtype-specific disease module identification. The drugs from the drug bank database were retrieved to target these disease modules. However, the efficacy of anticancer drugs depends on the molecular profile of the cancer and varies among cancer patients due to intratumor heterogeneity. Hence, we developed a deep-learning-based drug response prediction framework using the experimental drug screening data. Models for 30 drugs that can target the disease module were developed, where drug response measured by IC50 was considered a response and gene expression and mutation data were considered predictor variables. The model construction consists of three steps: feature selection, data integration, and classification. We observed the consistent performance of the models in training, test, and validation datasets. Drug responses were predicted for particular cell lines derived from distinct subtypes of gliomas. We found that subtypes of gliomas respond differently to the drug, highlighting the importance of subtype-specific drug response prediction. Therefore, the development of personalized therapy by integrating network medicine and a deep learning-based approach can lead to cancer-specific treatment and improved patient care.

摘要

胶质瘤患者的预后较差,这使得人们开始关注精准治疗的有效方法。在此,我们运用了基于网络医学和人工智能的算法,来设计识别胶质瘤亚型特异性靶点及预测药物反应的框架。我们确定了在低级别胶质瘤和多形性胶质母细胞瘤的每个亚型中差异表达且与癌症特异性过程相关的驱动突变。差异表达的驱动突变也用于识别亚型特异性疾病模块。从药物库数据库中检索药物以靶向这些疾病模块。然而,抗癌药物的疗效取决于癌症的分子特征,并且由于肿瘤内异质性在癌症患者中存在差异。因此,我们利用实验性药物筛选数据开发了一个基于深度学习的药物反应预测框架。针对30种可靶向疾病模块的药物建立了模型,其中将通过IC50测量的药物反应视为一种反应,将基因表达和突变数据视为预测变量。模型构建包括三个步骤:特征选择、数据整合和分类。我们在训练、测试和验证数据集中观察到模型具有一致的性能。对源自不同胶质瘤亚型的特定细胞系的药物反应进行了预测。我们发现胶质瘤的亚型对药物的反应不同,这突出了亚型特异性药物反应预测的重要性。因此,通过整合网络医学和基于深度学习的方法来开发个性化治疗,可以实现癌症特异性治疗并改善患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/581f/10926146/6c3da1eaa89c/gr1.jpg

相似文献

1
Uncovering the subtype-specific disease module and the development of drug response prediction models for glioma.
Heliyon. 2024 Mar 1;10(5):e27190. doi: 10.1016/j.heliyon.2024.e27190. eCollection 2024 Mar 15.
4
Machine learning-based identification of lower grade glioma stemness subtypes discriminates patient prognosis and drug response.
Comput Struct Biotechnol J. 2023 Jul 22;21:3827-3840. doi: 10.1016/j.csbj.2023.07.029. eCollection 2023.
6
New insights for precision treatment of glioblastoma from analysis of single-cell lncRNA expression.
J Cancer Res Clin Oncol. 2021 Jul;147(7):1881-1895. doi: 10.1007/s00432-021-03584-9. Epub 2021 Mar 11.
7
Translational validation of personalized treatment strategy based on genetic characteristics of glioblastoma.
PLoS One. 2014 Aug 1;9(8):e103327. doi: 10.1371/journal.pone.0103327. eCollection 2014.
9
Prediction of lower-grade glioma molecular subtypes using deep learning.
J Neurooncol. 2020 Jan;146(2):321-327. doi: 10.1007/s11060-019-03376-9. Epub 2019 Dec 21.
10
Optimized risk stratification strategy for glioma patients based on the feature genes of poor immune cell infiltration patterns.
J Cancer Res Clin Oncol. 2023 Nov;149(15):13855-13874. doi: 10.1007/s00432-023-05209-9. Epub 2023 Aug 3.

引用本文的文献

1
A semi-supervised weighted SPCA- and convolution KAN-based model for drug response prediction.
Front Genet. 2025 Mar 21;16:1532651. doi: 10.3389/fgene.2025.1532651. eCollection 2025.

本文引用的文献

1
[Not Available].
Heliyon. 2023 Nov 14;10(1):e22095. doi: 10.1016/j.heliyon.2023.e22095. eCollection 2024 Jan 15.
4
Cancer driver mutations: predictions and reality.
Trends Mol Med. 2023 Jul;29(7):554-566. doi: 10.1016/j.molmed.2023.03.007. Epub 2023 Apr 17.
5
Machine learning based personalized drug response prediction for lung cancer patients.
Sci Rep. 2022 Nov 7;12(1):18935. doi: 10.1038/s41598-022-23649-0.
6
Gene expression based inference of cancer drug sensitivity.
Nat Commun. 2022 Sep 27;13(1):5680. doi: 10.1038/s41467-022-33291-z.
7
Combination Olaparib and Temozolomide for the Treatment of Glioma: A Retrospective Case Series.
Neurology. 2022 Oct 24;99(17):750-755. doi: 10.1212/WNL.0000000000201203.
8
Subtyping and grading of lower-grade gliomas using integrated feature selection and support vector machine.
Brief Funct Genomics. 2022 Sep 16;21(5):408-421. doi: 10.1093/bfgp/elac025.
9
Targeting protein arginine methyltransferase 5 sensitizes glioblastoma to trametinib.
Neurooncol Adv. 2022 Jun 20;4(1):vdac095. doi: 10.1093/noajnl/vdac095. eCollection 2022 Jan-Dec.
10
Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
Comput Biol Med. 2022 Sep;148:105832. doi: 10.1016/j.compbiomed.2022.105832. Epub 2022 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验