Suppr超能文献

一项针对症状管理、困扰和辅助内分泌治疗依从性的远程医疗干预:一项随机对照试验。

A telehealth intervention for symptom management, distress, and adherence to adjuvant endocrine therapy: A randomized controlled trial.

机构信息

Massachusetts General Hospital, Boston, Massachusetts, USA.

Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Cancer. 2022 Oct 1;128(19):3541-3551. doi: 10.1002/cncr.34409. Epub 2022 Aug 4.

Abstract

BACKGROUND

Patients taking adjuvant endocrine therapy (AET) after breast cancer face adherence challenges and symptom-related distress. We conducted a randomized trial to evaluate the feasibility, acceptability, and preliminary efficacy of a telehealth intervention (Symptom-Targeted Randomized Intervention for Distress and Adherence to Adjuvant Endocrine Therapy [STRIDE]) for patients taking AET.

METHODS

From October 2019 to June 2021, 100 patients reporting difficulty with AET were randomly assigned to either STRIDE or a medication monitoring (MedMon) control group. STRIDE included six weekly small-group videoconferencing sessions and two individual calls. We defined feasibility as having >50% of eligible patients enroll, >70% complete the 12-week assessment, and > 70% of STRIDE patients complete ≥4/6 sessions. We monitored adherence with the Medication Event Monitoring System Caps (MEMS Caps). At baseline and 12- and 24-weeks after baseline, patients self-reported adherence (Medication Adherence Report Scale), AET satisfaction (Cancer Therapy Satisfaction Questionnaire), symptom distress (Breast Cancer Prevention Trial-Symptom Checklist), self-management of symptoms (Self-efficacy for Symptom Management-AET), coping (Measure of Current Status), quality of life (QOL; Functional Assessment of Cancer Therapy-Breast), and mood (Hospital Anxiety and Depression Scale). We used linear mixed effects models to assess the effect of STRIDE on longitudinal outcomes.

RESULTS

We enrolled 70.9% (100/141) of eligible patients; 92% completed the 12-week assessment, and 86% completed ≥4/6 STRIDE sessions. Compared with MedMon, STRIDE patients reported less symptom distress (B[difference] = -1.91; 95% CI, -3.29 to -0.52; p = .007) and better self-management of AET symptoms, coping, QOL, and mood. We did not observe significant differences in AET satisfaction or adherence.

CONCLUSIONS

STRIDE is feasible and acceptable, showing promise for improving outcomes in patients taking AET after breast cancer.

LAY SUMMARY

Patients taking adjuvant endocrine therapy (AET) after breast cancer may face challenges while following their treatment regimen. In this randomized controlled trial of 100 patients taking AET, a brief, small-group virtual intervention (STRIDE) was well-received by patients and led to improvements in how upset patients were due to symptoms, how confident they were in managing symptoms, and how well they could cope with stress. Thus, STRIDE is a promising intervention and should be tested in future multi-site trials.

摘要

背景

乳腺癌患者在接受辅助内分泌治疗(AET)后面临着坚持治疗的挑战和与症状相关的痛苦。我们进行了一项随机试验,以评估一种远程医疗干预措施(针对困扰和坚持辅助内分泌治疗的症状的靶向随机干预 [STRIDE])对接受 AET 的患者的可行性、可接受性和初步疗效。

方法

从 2019 年 10 月至 2021 年 6 月,100 名报告 AET 困难的患者被随机分配到 STRIDE 组或药物监测(MedMon)对照组。STRIDE 包括六次每周的小组视频会议和两次个人电话。我们将可行性定义为有超过 50%的合格患者入组,超过 70%的患者完成 12 周的评估,并且超过 70%的 STRIDE 患者完成了 4/6 次以上的治疗。我们使用 Medication Event Monitoring System Caps(MEMS Caps)监测药物的使用情况。在基线和基线后 12 周和 24 周时,患者自我报告了药物的使用情况(药物使用情况报告量表)、AET 的满意度(癌症治疗满意度问卷)、症状的痛苦(乳腺癌预防试验症状清单)、对症状的自我管理(针对 AET 的症状管理自我效能感)、应对(当前状态的衡量标准)、生活质量(功能性癌症治疗乳房问卷)和情绪(医院焦虑和抑郁量表)。我们使用线性混合效应模型来评估 STRIDE 对纵向结果的影响。

结果

我们招募了 70.9%(100/141)的合格患者;92%的患者完成了 12 周的评估,86%的患者完成了至少 4/6 次 STRIDE 治疗。与 MedMon 相比,STRIDE 组患者的症状困扰程度较低(B[差异]为-1.91;95%置信区间,-3.29 至-0.52;p=0.007),对 AET 症状的自我管理、应对、生活质量和情绪的改善更好。我们没有观察到 AET 满意度或使用情况的显著差异。

结论

STRIDE 是可行的和可接受的,对改善乳腺癌患者接受 AET 后的治疗结果有很大的希望。

患者感言

接受乳腺癌辅助内分泌治疗的患者在遵循治疗方案时可能会面临挑战。在这项针对 100 名接受 AET 治疗的患者的随机对照试验中,一种简短的小组虚拟干预措施(STRIDE)受到了患者的欢迎,并改善了患者因症状而感到的不适程度、他们对管理症状的信心以及他们应对压力的能力。因此,STRIDE 是一种很有前途的干预措施,应该在未来的多中心试验中进行测试。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验