Suppr超能文献

调制神经共放电以增强脑卒中后的网络传输和改善运动功能。

Modulation of neural co-firing to enhance network transmission and improve motor function after stroke.

机构信息

Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Neurology Service, SFVAHCS, San Francisco, CA, USA.

Department of Neurology, Weill Institute for Neuroscience, University of California San Francisco, San Francisco, CA, USA; Neurology Service, SFVAHCS, San Francisco, CA, USA.

出版信息

Neuron. 2022 Aug 3;110(15):2363-2385. doi: 10.1016/j.neuron.2022.06.024.

Abstract

Stroke is a leading cause of disability. While neurotechnology has shown promise for improving upper limb recovery after stroke, efficacy in clinical trials has been variable. Our central thesis is that to improve clinical translation, we need to develop a common neurophysiological framework for understanding how neurotechnology alters network activity. Our perspective discusses principles for how motor networks, both healthy and those recovering from stroke, subserve reach-to-grasp movements. We focus on neural processing at the resolution of single movements, the timescale at which neurotechnologies are applied, and discuss how this activity might drive long-term plasticity. We propose that future studies should focus on cross-area communication and bridging our understanding of timescales ranging from single trials within a session to across multiple sessions. We hope that this perspective establishes a combined path forward for preclinical and clinical research with the goal of more robust clinical translation of neurotechnology.

摘要

中风是导致残疾的主要原因之一。神经技术在改善中风后上肢康复方面显示出了一定的前景,但临床试验的疗效却各不相同。我们的核心观点是,为了提高临床转化,我们需要开发一个通用的神经生理学框架,以了解神经技术如何改变网络活动。我们的观点讨论了运动网络(包括健康的和中风后恢复的网络)如何为伸手抓握运动提供服务的原则。我们关注于单个运动分辨率下的神经处理,以及神经技术应用的时间尺度,并讨论这种活动如何驱动长期的可塑性。我们提出,未来的研究应该侧重于跨区域的通信,并弥合我们对从单次试验到多个试验的时间尺度的理解。我们希望,这种观点为临床前和临床研究建立了一个综合的前进道路,目标是更稳健地将神经技术应用于临床。

相似文献

1
Modulation of neural co-firing to enhance network transmission and improve motor function after stroke.
Neuron. 2022 Aug 3;110(15):2363-2385. doi: 10.1016/j.neuron.2022.06.024.
3
Network Reorganization for Neurophysiological and Behavioral Recovery Following Stroke.
Cent Nerv Syst Agents Med Chem. 2024;24(2):117-128. doi: 10.2174/0118715249277597231226064144.
6
Motor recovery of the ipsilesional upper limb in subacute stroke.
Arch Phys Med Rehabil. 2013 Nov;94(11):2283-90. doi: 10.1016/j.apmr.2013.05.024. Epub 2013 Jun 22.
7
Neural plasticity and bilateral movements: A rehabilitation approach for chronic stroke.
Prog Neurobiol. 2005 Apr;75(5):309-20. doi: 10.1016/j.pneurobio.2005.04.001.
8
The contribution of kinematics in the assessment of upper limb motor recovery early after stroke.
Neurorehabil Neural Repair. 2014 Jan;28(1):4-12. doi: 10.1177/1545968313498514. Epub 2013 Aug 1.
9
Recovery of upper-limb function due to enhanced use-dependent plasticity in chronic stroke patients.
Brain. 2010 Nov;133(11):3373-84. doi: 10.1093/brain/awq193. Epub 2010 Aug 5.

引用本文的文献

1
Active Dissociation of Intracortical Spiking and High Gamma Activity.
bioRxiv. 2025 Jul 11:2025.07.10.663559. doi: 10.1101/2025.07.10.663559.
2
Separable global and local beta burst dynamics in motor cortex of primates.
bioRxiv. 2025 May 10:2025.05.05.652217. doi: 10.1101/2025.05.05.652217.
3
Dynamic electrophysiological changes in abnormal brain cavities post-ischemic stroke.
Front Neurosci. 2025 May 16;19:1565255. doi: 10.3389/fnins.2025.1565255. eCollection 2025.
4
Trial-By-Trial Variation In Upper Extremity Movement Smoothness After Acute Stroke Relates To Clinical Assessments And Corticospinal Tract Injury.
Neurorehabil Neural Repair. 2025 Aug;39(8):639-652. doi: 10.1177/15459683251340916. Epub 2025 May 31.
6
Altered Functional Connectivity Between Cortical Premotor Areas and the Spinal Cord in Chronic Stroke.
Stroke. 2025 May;56(5):1159-1168. doi: 10.1161/STROKEAHA.124.048384. Epub 2025 Mar 20.
7
Activity-dependent transcriptional programs in memory regulate motor recovery after stroke.
Commun Biol. 2024 Aug 25;7(1):1048. doi: 10.1038/s42003-024-06723-3.
8
Editorial: Advanced neurotechnology in stroke rehabilitation.
Front Neurol. 2024 Jun 20;15:1440752. doi: 10.3389/fneur.2024.1440752. eCollection 2024.
9
Cross-Frequency Coupling as a Biomarker for Early Stroke Recovery.
Neurorehabil Neural Repair. 2024 Jul;38(7):506-517. doi: 10.1177/15459683241257523. Epub 2024 Jun 6.
10
Disturbed laterality of non-rapid eye movement sleep oscillations in post-stroke human sleep: a pilot study.
Front Neurol. 2023 Nov 30;14:1243575. doi: 10.3389/fneur.2023.1243575. eCollection 2023.

本文引用的文献

1
Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis.
Nat Med. 2023 Mar;29(3):689-699. doi: 10.1038/s41591-022-02202-6. Epub 2023 Feb 20.
4
Recovery of consolidation after sleep following stroke-interaction of slow waves, spindles, and GABA.
Cell Rep. 2022 Mar 1;38(9):110426. doi: 10.1016/j.celrep.2022.110426.
6
Corticospinal Tract Lesion Load Originating From Both Ventral Premotor and Primary Motor Cortices Are Associated With Post-stroke Motor Severity.
Neurorehabil Neural Repair. 2022 Mar;36(3):179-182. doi: 10.1177/15459683211068441. Epub 2021 Dec 24.
7
Smaller spared subcortical nuclei are associated with worse post-stroke sensorimotor outcomes in 28 cohorts worldwide.
Brain Commun. 2021 Oct 27;3(4):fcab254. doi: 10.1093/braincomms/fcab254. eCollection 2021.
8
The neural mechanisms of manual dexterity.
Nat Rev Neurosci. 2021 Dec;22(12):741-757. doi: 10.1038/s41583-021-00528-7. Epub 2021 Oct 28.
9
Compartmentalized dynamics within a common multi-area mesoscale manifold represent a repertoire of human hand movements.
Neuron. 2022 Jan 5;110(1):154-174.e12. doi: 10.1016/j.neuron.2021.10.002. Epub 2021 Oct 21.
10
Mapping the corticoreticular pathway from cortex-wide anterograde axonal tracing in the mouse.
J Neurosci Res. 2021 Dec;99(12):3392-3405. doi: 10.1002/jnr.24975. Epub 2021 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验