Suppr超能文献

经鼻内或肠胃外途径给予高危肉牛犊改良活病毒疫苗的临床和微生物学效果。

Clinical and microbiological effects in high-risk beef calves administered intranasal or parenteral modified-live virus vaccines.

机构信息

Department of Agricultural Sciences, West Texas A&M University, Canyon, 79016 TX, USA.

College of Veterinary Medicine, Mississippi State University, Starkville, 39759, MS, USA.

出版信息

J Anim Sci. 2022 Nov 1;100(11). doi: 10.1093/jas/skac249.

Abstract

Experimental bovine respiratory syncytial virus (BRSV) infection can enhance Histophilus somni (Hs) disease in calves; we thus hypothesized that modified-live virus (MLV) vaccines containing BRSV may alter Hs carriage. Our objective was to determine the effects of an intranasal (IN) trivalent (infectious bovine rhinotracheitis virus [IBRV], parainfluenza-3 virus [PI3V], and BRSV) respiratory vaccine with parenteral (PT) bivalent bovine viral diarrhea virus (BVDV) type I + II vaccine, or a PT pentavalent (BVDV type I and II, IBRV, BRSV, and PI3V) respiratory vaccine, on health, growth, immunity, and nasal pathogen colonization in high-risk beef calves. Calves (n = 525) were received in five truckload blocks and stratified by body weight (213 ± 18.4 kg), sex, and presence of a pre-existing ear-tag. Pens were spatially arranged in sets of three within a block and randomly assigned to treatment with an empty pen between treatment groups consisting of: 1) no MLV respiratory vaccination (CON), 2) IN trivalent MLV respiratory vaccine with PT BVDV type I + II vaccine (INT), or 3) PT pentavalent, MLV respiratory vaccine (INJ). The pen was the experimental unit, with 15 pens/treatment and 11 to 12 calves/pen in this 70-d receiving study. Health, performance, and BRSV, Hs, Mycoplasma bovis (Mb), Mannheimia haemolytica (Mh), and Pasteurella multocida (Pm) level in nasal swabs via rtPCR was determined on days 0, 7, 14, and 28, and BRSV-specific serum neutralizing antibody titer, and serum IFN-γ concentration via ELISA, were evaluated on days 0, 14, 28, 42, 56, and 70. Morbidity (P = 0.83), mortality (P = 0.68) and average daily gain (P ≥ 0.82) did not differ. Serum antibodies against BRSV increased with time (P < 0.01). There was a treatment × time interaction (P < 0.01) for Hs detection; on days 14 and 28, INT (21.1% and 57.1%) were more frequently (P < 0.01) Hs positive than CON (3.6% and 25.3%) or INJ (3.4 % and 8.4%). Also, INT had reduced (P = 0.03) cycle time of Hs positive samples on day 28. No difference (P ≥ 0.17) was found for IFN-γ concentration and Mb, Mh, or Pm detection. The proportion of Mh positive culture from lung specimens differed (P < 0.01); INT had fewer (0.0%; 0 of 9) Mh positive lungs than INJ (45.5%; 6 of 13) or CON (74.0%; 14 of 19). Vaccination of high-risk calves with MLV did not clearly impact health or growth during the receiving period. However, INT was associated with an altered upper respiratory microbial community in cattle resulting in increased detection and level of Hs.

摘要

实验性牛呼吸道合胞病毒(BRSV)感染可增强牛嗜血杆菌(Hs)病在犊牛中的发病程度;因此,我们假设含有 BRSV 的活病毒(MLV)疫苗可能会改变 Hs 的携带情况。我们的目的是确定鼻内(IN)三联(传染性牛鼻气管炎病毒[IBRV]、副流感-3 病毒[PI3V]和 BRSV)呼吸道疫苗与皮下(PT)双价牛病毒性腹泻病毒(BVDV)I+II 疫苗,或 PT 五价(BVDV 型 I 和 II、IBRV、BRSV 和 PI3V)呼吸道疫苗对高危肉牛犊牛的健康、生长、免疫力和鼻腔病原体定植的影响。犊牛(n=525)通过五卡车批次接收,并按体重(213±18.4kg)、性别和是否存在先前的耳标进行分层。在每个批次内,将畜栏以三组的方式空间排列,并随机分配到以下治疗组:1)不接种 MLV 呼吸道疫苗(CON),2)IN 三联 MLV 呼吸道疫苗加 PT BVDV I+II 疫苗(INT),或 3)PT 五价 MLV 呼吸道疫苗(INJ)。畜栏是实验单位,每组 15 个畜栏,每个畜栏 11-12 头犊牛。在这个为期 70 天的接收研究中,在第 0、7、14 和 28 天通过 rtPCR 测定鼻拭子中的健康、性能和 BRSV、Hs、牛支原体(Mb)、曼海姆氏菌(Mh)和多杀性巴氏杆菌(Pm)水平,在第 0、14、28、42、56 和 70 天通过 ELISA 评估 BRSV 特异性血清中和抗体滴度和血清 IFN-γ浓度。发病率(P=0.83)、死亡率(P=0.68)和平均日增重(P≥0.82)没有差异。血清中针对 BRSV 的抗体随时间增加(P<0.01)。在 Hs 检测方面存在治疗与时间的相互作用(P<0.01);在第 14 天和第 28 天,INT(21.1%和 57.1%)比 CON(3.6%和 25.3%)或 INJ(3.4%和 8.4%)更频繁地呈 Hs 阳性(P<0.01)。此外,INT 在第 28 天还降低了 Hs 阳性样本的循环时间(P=0.03)。IFN-γ浓度和 Mb、Mh 或 Pm 的检测没有差异(P≥0.17)。肺标本中 Mh 阳性培养的比例不同(P<0.01);INT 中 Mh 阳性肺的比例(0.0%;9 头中无 1 头)低于 INJ(45.5%;13 头中有 6 头)或 CON(74.0%;19 头中有 14 头)。给高危犊牛接种 MLV 疫苗并没有明显影响牛在接收期的健康或生长情况。然而,INT 与牛的上呼吸道微生物群的改变有关,导致 Hs 的检测和水平增加。

相似文献

5
Virus detection by PCR following vaccination of naive calves with intranasal or injectable multivalent modified-live viral vaccines.
J Vet Diagn Invest. 2017 Sep;29(5):628-635. doi: 10.1177/1040638717709039. Epub 2017 May 26.

引用本文的文献

2
Effects of respiratory virus vaccination and bovine respiratory disease on the respiratory microbiome of feedlot cattle.
Front Microbiol. 2023 Jun 13;14:1203498. doi: 10.3389/fmicb.2023.1203498. eCollection 2023.
3
is associated with during acute bovine respiratory disease in feedlot cattle.
Front Microbiol. 2022 Aug 1;13:946792. doi: 10.3389/fmicb.2022.946792. eCollection 2022.

本文引用的文献

3
Vaccination Management of Beef Cattle: Delayed Vaccination and Endotoxin Stacking.
Vet Clin North Am Food Anim Pract. 2019 Nov;35(3):575-592. doi: 10.1016/j.cvfa.2019.07.003.
6
A literature review of antimicrobial resistance in Pathogens associated with bovine respiratory disease.
Anim Health Res Rev. 2015 Dec;16(2):125-34. doi: 10.1017/S146625231500016X. Epub 2015 Sep 16.
7
Natural variations in the stress and acute phase responses of cattle.
Innate Immun. 2014 Nov;20(8):888-96. doi: 10.1177/1753425913508993. Epub 2013 Nov 11.
8
Effects of vaccination on the acute-phase protein response and measures of performance in growing beef calves.
J Anim Sci. 2013 Apr;91(4):1831-7. doi: 10.2527/jas.2012-5724. Epub 2013 Jan 23.
9
Bacterial pathogens of the bovine respiratory disease complex.
Vet Clin North Am Food Anim Pract. 2010 Jul;26(2):381-94. doi: 10.1016/j.cvfa.2010.04.004.
10
Overview of the North American beef cattle industry and the incidence of bovine respiratory disease (BRD).
Anim Health Res Rev. 2009 Dec;10(2):101-3. doi: 10.1017/S1466252309990090.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验