Suppr超能文献

工程化人类 JMJD2A 的结构域,以更好地理解组蛋白肽的识别。

Engineering human JMJD2A tudor domains for an improved understanding of histone peptide recognition.

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA.

Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA.

出版信息

Proteins. 2023 Jan;91(1):32-46. doi: 10.1002/prot.26408. Epub 2022 Aug 16.

Abstract

JMJD2A is a histone lysine demethylase which recognizes and demethylates H3K9me3 and H3K36me3 residues and is overexpressed in various cancers. It utilizes a tandem tudor domain to facilitate its own recruitment to histone sites, recognizing various di- and tri-methyl lysine residues with moderate affinity. In this study, we successfully engineered the tudor domain of JMJD2A to specifically bind to H4K20me3 with a 20-fold increase of affinity and improved selectivity. To reveal the molecular basis, we performed molecular dynamics and free energy decomposition analysis on the human JMJD2A tandem tudor domains bound to H4K20me2, H4K20me3, and H3K23me3 peptides to uncover the residues and conformational changes important for the enhanced binding affinity and selectivity toward H4K20me2/3. These analyses revealed new insights into understanding chromatin reader domains recognizing histone modifications and improving binding affinity and selectivity of these domains. Furthermore, we showed that the tight binding of JMJD2A to H4K20me2/3 is not sufficient to improve the efficiency of CRISPR-CAS9 mediated homology directed repair (HDR), suggesting a complicated relationship between JMJD2A and the DNA damage response beyond binding affinity toward the H4K20me2/3 mark.

摘要

JMJD2A 是一种组蛋白赖氨酸去甲基酶,可识别并去甲基化 H3K9me3 和 H3K36me3 残基,在各种癌症中过表达。它利用串联结构域 tudor 来促进自身与组蛋白的募集,以中等亲和力识别各种二甲基和三甲基赖氨酸残基。在这项研究中,我们成功地对 JMJD2A 的 tudor 结构域进行了工程改造,使其能够特异性结合 H4K20me3,亲和力提高了 20 倍,选择性也得到了改善。为了揭示分子基础,我们对人 JMJD2A 串联结构域 tudor 与 H4K20me2、H4K20me3 和 H3K23me3 肽结合进行了分子动力学和自由能分解分析,以揭示对增强结合亲和力和对 H4K20me2/3 的选择性重要的残基和构象变化。这些分析为理解染色质读取器域识别组蛋白修饰以及提高这些域的结合亲和力和选择性提供了新的见解。此外,我们还表明,JMJD2A 与 H4K20me2/3 的紧密结合不足以提高 CRISPR-CAS9 介导的同源定向修复(HDR)的效率,这表明 JMJD2A 与 DNA 损伤反应之间的关系比其与 H4K20me2/3 标记的结合亲和力更为复杂。

相似文献

1
Engineering human JMJD2A tudor domains for an improved understanding of histone peptide recognition.
Proteins. 2023 Jan;91(1):32-46. doi: 10.1002/prot.26408. Epub 2022 Aug 16.
3
Tudor domain of histone demethylase KDM4B is a reader of H4K20me3.
Acta Biochim Biophys Sin (Shanghai). 2020 Aug 5;52(8):901-906. doi: 10.1093/abbs/gmaa064.
4
Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A.
Science. 2006 May 5;312(5774):748-51. doi: 10.1126/science.1125162. Epub 2006 Apr 6.
5
Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor.
Nat Struct Mol Biol. 2008 Jan;15(1):109-11. doi: 10.1038/nsmb1326. Epub 2007 Dec 16.
6
Dioxygen Binding in the Active Site of Histone Demethylase JMJD2A and the Role of the Protein Environment.
Chemistry. 2015 Dec 21;21(52):18983-92. doi: 10.1002/chem.201502983. Epub 2015 Nov 18.
7
Identification of non-histone substrates for JMJD2A-C histone demethylases.
Biochem Biophys Res Commun. 2009 Dec 11;390(2):280-4. doi: 10.1016/j.bbrc.2009.09.107. Epub 2009 Sep 30.
8
RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites.
EMBO J. 2012 Apr 18;31(8):1865-78. doi: 10.1038/emboj.2012.47. Epub 2012 Feb 28.
9
Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity.
Nature. 2007 Jul 5;448(7149):87-91. doi: 10.1038/nature05971. Epub 2007 Jun 24.
10
Reader domain specificity and lysine demethylase-4 family function.
Nat Commun. 2016 Nov 14;7:13387. doi: 10.1038/ncomms13387.

引用本文的文献

1
Targeting Tudor domains in leukemia: epigenetic insights for drug development.
Epigenomics. 2025 Aug;17(12):817-825. doi: 10.1080/17501911.2025.2525746. Epub 2025 Jul 7.

本文引用的文献

1
Tracking the Dynamic Histone Methylation of H3K27 in Live Cancer Cells.
ACS Sens. 2021 Dec 24;6(12):4369-4378. doi: 10.1021/acssensors.1c01670. Epub 2021 Dec 8.
2
Enhancement of CRISPR-Cas9 induced precise gene editing by targeting histone H2A-K15 ubiquitination.
BMC Biotechnol. 2020 Oct 23;20(1):57. doi: 10.1186/s12896-020-00650-x.
4
IL-6 and IL-8 are involved in JMJD2A-regulated malignancy of ovarian cancer cells.
Arch Biochem Biophys. 2020 May 15;684:108334. doi: 10.1016/j.abb.2020.108334. Epub 2020 Mar 12.
5
Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant.
Nat Commun. 2019 Jul 30;10(1):3395. doi: 10.1038/s41467-019-11105-z.
6
The Clinically Used Iron Chelator Deferasirox Is an Inhibitor of Epigenetic JumonjiC Domain-Containing Histone Demethylases.
ACS Chem Biol. 2019 Aug 16;14(8):1737-1750. doi: 10.1021/acschembio.9b00289. Epub 2019 Jul 19.
7
Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing.
Nat Biomed Eng. 2017 Nov;1(11):878-888. doi: 10.1038/s41551-017-0145-2. Epub 2017 Oct 9.
8
Deciphering and engineering chromodomain-methyllysine peptide recognition.
Sci Adv. 2018 Nov 7;4(11):eaau1447. doi: 10.1126/sciadv.aau1447. eCollection 2018 Nov.
9
Interrogating Interactions and Modifications of Histones in Live Cells.
Cell Chem Biol. 2018 Jan 18;25(1):1-3. doi: 10.1016/j.chembiol.2018.01.003.
10
Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency.
Nat Biotechnol. 2018 Jan;36(1):95-102. doi: 10.1038/nbt.4021. Epub 2017 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验