Cortopassi Wilian A, Simion Robert, Honsby Charles E, França Tanos C C, Paton Robert S
Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA (UK) paton.chem.ox.ac.uk.
Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ (UK).
Chemistry. 2015 Dec 21;21(52):18983-92. doi: 10.1002/chem.201502983. Epub 2015 Nov 18.
JMJD2A catalyses the demethylation of di- and trimethylated lysine residues in histone tails and is a target for the development of new anticancer medicines. Mechanistic details of demethylation are yet to be elucidated and are important for the understanding of epigenetic processes. We have evaluated the initial step of histone demethylation by JMJD2A and demonstrate the dramatic effect of the protein environment upon oxygen binding using quantum mechanics/molecular mechanics (QM/MM) calculations. The changes in electronic structure have been studied for possible spin states and different conformations of O2 , using a combination of quantum and classical simulations. O2 binding to this histone demethylase is computed to occur preferentially as an end-on superoxo radical bound to a high-spin ferric centre, yielding an overall quintet ground state. The favourability of binding is strongly influenced by the surrounding protein: we have quantified this effect using an energy decomposition scheme into electrostatic and dispersion contributions. His182 and the methylated lysine assist while Glu184 and the oxoglutarate cofactor are deleterious for O2 binding. Charge separation in the superoxo-intermediate benefits from the electrostatic stabilization provided by the surrounding residues, stabilizing the binding process significantly. This work demonstrates the importance of the extended protein environment in oxygen binding, and the role of energy decomposition in understanding the physical origin of binding/recognition.
JMJD2A催化组蛋白尾部二甲基化和三甲基化赖氨酸残基的去甲基化,是新型抗癌药物开发的靶点。去甲基化的机制细节尚待阐明,这对于理解表观遗传过程很重要。我们通过量子力学/分子力学(QM/MM)计算评估了JMJD2A对组蛋白去甲基化的初始步骤,并证明了蛋白质环境对氧结合的显著影响。利用量子和经典模拟相结合的方法,研究了O2可能的自旋态和不同构象下的电子结构变化。计算得出,O2与这种组蛋白去甲基化酶的结合优先以端对端超氧自由基的形式发生,该自由基与高自旋铁中心结合,产生一个整体的五重态基态。结合的有利性受到周围蛋白质的强烈影响:我们使用能量分解方案将其分为静电和色散贡献来量化这种影响。His182和甲基化赖氨酸起到辅助作用,而Glu184和酮戊二酸辅因子对O2结合不利。超氧中间体中的电荷分离受益于周围残基提供的静电稳定作用,显著稳定了结合过程。这项工作证明了扩展的蛋白质环境在氧结合中的重要性,以及能量分解在理解结合/识别物理起源中的作用。