Suppr超能文献

基于血液学参数和临床病理特征的列线图预测保乳治疗后局部区域复发情况

A Nomogram Based on Hematological Parameters and Clinicopathological Characteristics for Predicting Local-Regional Recurrence After Breast-Conserving Therapy.

作者信息

Sun Luhao, Zhao Wei, Wang Fukai, Song Xiang, Wang Xinzhao, Li Chao, Yu Zhiyong

机构信息

Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.

出版信息

Front Oncol. 2022 Jul 19;12:861210. doi: 10.3389/fonc.2022.861210. eCollection 2022.

Abstract

OBJECTIVES

The aim of this study was to identify the factors for local-regional recurrence (LRR) after breast-conserving therapy (BCT). We established a practical nomogram to predict the likelihood of LRR after BCT based on hematological parameters and clinicopathological features.

METHODS

A retrospective analysis was performed on 2,085 consecutive breast cancer patients who received BCT in Shandong Cancer Hospital from 2006 to 2016, including 1,460 patients in the training cohort and 625 patients in the validation cohort. Univariate and multivariate analyses were performed based on hematological parameters (fibrinogen, platelets, mean platelet volume, neutrophils, monocytes, and lymphocytes) and clinicopathological characteristics to identify the independent factors for LRR. Subsequently, a nomogram for predicting LRR was established by logistic regression analysis. The nomogram was validated in 625 patients in the validation cohort.

RESULTS

During the median follow-up period of 66 months, 44 (3.01%) patients in the training cohort and 19 (3.04%) patients in the validation cohort suffered from LRR. Multivariate analysis showed six independent factors related to LRR, including molecular subtype, pathological N stage, re-resection, radiotherapy or not, platelet countMPVfibrinogen (PMF), and neutrophil count/lymphocyte count ratio (NLR). Six variables were entered into logistic regression to establish the nomogram for predicting LRR. The nomogram of LRR showed excellent discrimination and prediction accuracy. The area under the receiver operating characteristic curve (AUC) was 0.89 ( < 0.001, 95% CI = 0.83, 0.95) in the training cohort and 0.88 ( < 0.001, 95% CI = 0.8, 0.96) in the validation cohort. Calibration curves for the prediction model in the training and validation cohorts both demonstrated satisfactory consistency between the nomogram-predicted and actual LRR.

CONCLUSION

The combination of hematological parameters and clinicopathological characteristics can predict LRR after BCT. The predictive nomogram based on preoperative and postoperative indicators of BCT might serve as a practical tool for individualized prognostication. More prospective studies should be performed to verify the model.

摘要

目的

本研究旨在确定保乳治疗(BCT)后局部区域复发(LRR)的相关因素。我们基于血液学参数和临床病理特征建立了一个实用的列线图,以预测BCT后LRR的可能性。

方法

对2006年至2016年在山东省肿瘤医院接受BCT的2085例连续乳腺癌患者进行回顾性分析,其中训练队列1460例患者,验证队列625例患者。基于血液学参数(纤维蛋白原、血小板、平均血小板体积、中性粒细胞、单核细胞和淋巴细胞)和临床病理特征进行单因素和多因素分析,以确定LRR的独立因素。随后,通过逻辑回归分析建立预测LRR的列线图。该列线图在验证队列的625例患者中进行了验证。

结果

在中位随访期66个月期间,训练队列中有44例(3.01%)患者、验证队列中有19例(3.04%)患者发生LRR。多因素分析显示与LRR相关的6个独立因素,包括分子亚型、病理N分期、再次切除、是否接受放疗、血小板计数×平均血小板体积×纤维蛋白原(PMF)以及中性粒细胞计数/淋巴细胞计数比值(NLR)。将6个变量纳入逻辑回归以建立预测LRR的列线图。LRR列线图显示出良好的区分度和预测准确性。训练队列中受试者操作特征曲线(AUC)下面积为0.89(<0.001,95%CI = 0.83,0.95),验证队列中为0.88(<0.001,95%CI = 0.8,0.96)。训练队列和验证队列中预测模型的校准曲线均显示列线图预测的LRR与实际LRR之间具有令人满意的一致性。

结论

血液学参数与临床病理特征相结合可预测BCT后的LRR。基于BCT术前和术后指标的预测列线图可能成为个体化预后评估的实用工具。应开展更多前瞻性研究以验证该模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51d1/9344968/f2a015925187/fonc-12-861210-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验