Kim Juntae, Lee Su Yeon, Cha Byung Hee, Lee Wonseop, Ryu JiWung, Chung Young Hak, Kim Dongmin, Lim Seong-Hoon, Kang Tae Soo, Park Byoung-Eun, Lee Myung-Yong, Cho Sungsoo
Division of Cardiovascular Medicine, Department of Internal Medicine, Dankook University Hospital, Dankook University College of Medicine, Cheonan-si, South Korea.
CNAI, Seoul, South Korea.
Front Cardiovasc Med. 2022 Jul 19;9:933803. doi: 10.3389/fcvm.2022.933803. eCollection 2022.
In patients with suspected obstructive coronary artery disease (CAD), evaluation using a pre-test probability model is the key element for diagnosis; however, its accuracy is controversial. This study aimed to develop machine learning (ML) models using clinically relevant biomarkers to predict the presence of stable obstructive CAD and to compare ML models with an established pre-test probability of CAD models.
Eight machine learning models for prediction of obstructive CAD were trained on a cohort of 1,312 patients [randomly split into the training (80%) and internal validation sets (20%)]. Twelve clinical and blood biomarker features assessed on admission were used to inform the models. We compared the best-performing ML model and established the pre-test probability of CAD (updated Diamond-Forrester and CAD consortium) models.
The CatBoost algorithm model showed the best performance (area under the receiver operating characteristics, AUROC, 0.796, and 95% confidence interval, CI, 0.740-0.853; Matthews correlation coefficient, MCC, 0.448) compared to the seven other algorithms. The CatBoost algorithm model improved risk prediction compared with the CAD consortium clinical model (AUROC 0.727; 95% CI 0.664-0.789; MCC 0.313). The accuracy of the ML model was 74.6%. Age, sex, hypertension, high-sensitivity cardiac troponin T, hemoglobin A1c, triglyceride, and high-density lipoprotein cholesterol levels contributed most to obstructive CAD prediction.
The ML models using clinically relevant biomarkers provided high accuracy for stable obstructive CAD prediction. In real-world practice, employing such an approach could improve discrimination of patients with suspected obstructive CAD and help select appropriate non-invasive testing for ischemia.
在疑似阻塞性冠状动脉疾病(CAD)的患者中,使用检测前概率模型进行评估是诊断的关键要素;然而,其准确性存在争议。本研究旨在开发使用临床相关生物标志物的机器学习(ML)模型,以预测稳定阻塞性CAD的存在,并将ML模型与既定的CAD检测前概率模型进行比较。
在1312例患者队列(随机分为训练集80%和内部验证集20%)上训练了8种预测阻塞性CAD的机器学习模型。使用入院时评估的12项临床和血液生物标志物特征为模型提供信息。我们比较了表现最佳的ML模型,并建立了CAD的检测前概率(更新的Diamond-Forrester和CAD联盟)模型。
与其他七种算法相比,CatBoost算法模型表现最佳(受试者操作特征曲线下面积,AUROC,0.796,95%置信区间,CI,0.740-0.853;马修斯相关系数,MCC,0.448)。与CAD联盟临床模型相比,CatBoost算法模型改善了风险预测(AUROC 0.727;95%CI 0.664-0.789;MCC 0.313)。ML模型的准确率为74.6%。年龄、性别、高血压、高敏心肌肌钙蛋白T、糖化血红蛋白、甘油三酯和高密度脂蛋白胆固醇水平对阻塞性CAD预测贡献最大。
使用临床相关生物标志物的ML模型为稳定阻塞性CAD预测提供了高准确性。在实际临床实践中,采用这种方法可以改善对疑似阻塞性CAD患者的鉴别,并有助于选择合适的缺血性无创检测。