Suppr超能文献

图论分析俄英双语者的语义流畅性。

Graph Theory Analysis of Semantic Fluency in Russian-English Bilinguals.

机构信息

University of Tennessee College of Medicine, Memphis, Tennessee.

Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio.

出版信息

Cogn Behav Neurol. 2022 Sep 1;35(3):179-187. doi: 10.1097/WNN.0000000000000312.

Abstract

BACKGROUND

Semantic category fluency is a widely used task involving language, memory, and executive function. Previous studies of bilingual semantic fluency have shown only small differences between languages. Graph theory analyzes complex relationships in networks, including node and edge number, clustering coefficient, average path length, average number of direct neighbors, and scale-free and small-world properties.

OBJECTIVE

To shed light on whether the underlying neural processes involved in semantic category fluency testing yield substantially different networks in different languages.

METHOD

We compared languages and methods using both network analysis and conventional analysis of word production. We administered the animal naming task to 51 Russian-English bilinguals in each language. We constructed network graphs using three methods: (a) simple association of unique co-occurring neighbors, (b) corrected associations between consecutive words occurring beyond chance, and (c) a network community approach using planar maximally filtered graphs. We compared the resultant network analytics as well as their scale-free and small-world properties.

RESULTS

Participants produced more words in Russian than in English. Small-worldness metrics were variable between Russian and English but were consistent across the three graph theory analytical methods.

CONCLUSION

The networks had similar graph theory properties in both languages. The optimal methodology for creating networks from semantic category fluency remains to be determined.

摘要

背景

语义类别流畅性是一种广泛使用的任务,涉及语言、记忆和执行功能。以前对双语语义流畅性的研究表明,语言之间只有很小的差异。图论分析网络中的复杂关系,包括节点和边数、聚类系数、平均路径长度、平均直接邻居数以及无标度和小世界特性。

目的

阐明语义类别流畅性测试中涉及的潜在神经过程是否会在不同语言中产生截然不同的网络。

方法

我们使用网络分析和传统的词汇产生分析来比较语言和方法。我们对 51 名俄英双语者在每种语言中进行了动物命名任务。我们使用三种方法构建网络图:(a)唯一共同出现邻居的简单关联,(b)超出偶然发生的连续词之间的校正关联,以及(c)使用平面最大过滤图的网络社区方法。我们比较了所得网络分析以及它们的无标度和小世界特性。

结果

参与者在俄语中比在英语中产生更多的单词。小世界度指标在俄语和英语之间有所不同,但在三种图论分析方法中是一致的。

结论

这两种语言的网络具有相似的图论特性。从语义类别流畅性创建网络的最佳方法仍有待确定。

相似文献

1
Graph Theory Analysis of Semantic Fluency in Russian-English Bilinguals.
Cogn Behav Neurol. 2022 Sep 1;35(3):179-187. doi: 10.1097/WNN.0000000000000312.
2
Semantic and letter fluency in Spanish-English bilinguals.
Neuropsychology. 2002 Oct;16(4):562-76.
3
Verbal fluency as a measure of lexical access and cognitive control in bilingual persons with aphasia.
Aphasiology. 2020;34(11):1341-1362. doi: 10.1080/02687038.2020.1759774. Epub 2020 May 14.
4
Using big data to understand bilingual performance in semantic fluency: Findings from the Canadian Longitudinal Study on Aging.
PLoS One. 2022 Nov 28;17(11):e0277660. doi: 10.1371/journal.pone.0277660. eCollection 2022.
5
Semantic fluency in deaf children who use spoken and signed language in comparison with hearing peers.
Int J Lang Commun Disord. 2018 Jan;53(1):157-170. doi: 10.1111/1460-6984.12333. Epub 2017 Jul 10.
6
Network graph analysis of category fluency testing.
Cogn Behav Neurol. 2009 Mar;22(1):45-52. doi: 10.1097/WNN.0b013e318192ccaf.
9
The Effect of Language Dominance on Classic Semantic, Action, Emotional, and Phonemic Fluency in Unbalanced Bilinguals.
J Speech Lang Hear Res. 2023 Dec 11;66(12):4967-4983. doi: 10.1044/2023_JSLHR-23-00133. Epub 2023 Oct 27.
10
The role of language proficiency, cognate status and word frequency in the assessment of Spanish-English bilinguals' verbal fluency.
Int J Speech Lang Pathol. 2016 Apr;18(2):190-201. doi: 10.3109/17549507.2015.1081288. Epub 2016 Jan 29.

引用本文的文献

1
Navigating the Mental Lexicon: Network Structures, Lexical Search and Lexical Retrieval.
J Psycholinguist Res. 2024 Mar 1;53(2):21. doi: 10.1007/s10936-024-10059-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验