Suppr超能文献

基于肌电图的灵巧手部内操作动作解码与时间多通道视觉变换器

Electromyography Based Decoding of Dexterous, In-Hand Manipulation Motions With Temporal Multichannel Vision Transformers.

作者信息

Godoy Ricardo V, Dwivedi Anany, Liarokapis Minas

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:2207-2216. doi: 10.1109/TNSRE.2022.3196622. Epub 2022 Aug 11.

Abstract

Electromyography (EMG) signals have been used in designing muscle-machine interfaces (MuMIs) for various applications, ranging from entertainment (EMG controlled games) to human assistance and human augmentation (EMG controlled prostheses and exoskeletons). For this, classical machine learning methods such as Random Forest (RF) models have been used to decode EMG signals. However, these methods depend on several stages of signal pre-processing and extraction of hand-crafted features so as to obtain the desired output. In this work, we propose EMG based frameworks for the decoding of object motions in the execution of dexterous, in-hand manipulation tasks using raw EMG signals input and two novel deep learning (DL) techniques called Temporal Multi-Channel Transformers and Vision Transformers. The results obtained are compared, in terms of accuracy and speed of decoding the motion, with RF-based models and Convolutional Neural Networks as a benchmark. The models are trained for 11 subjects in a motion-object specific and motion-object generic way, using the 10-fold cross-validation procedure. This study shows that the performance of MuMIs can be improved by employing DL-based models with raw myoelectric activations instead of developing DL or classic machine learning models with hand-crafted features.

摘要

肌电图(EMG)信号已被用于设计肌肉-机器接口(MuMIs),以用于各种应用,从娱乐(EMG控制游戏)到人类辅助和人体增强(EMG控制的假肢和外骨骼)。为此,诸如随机森林(RF)模型等经典机器学习方法已被用于解码EMG信号。然而,这些方法依赖于信号预处理和手工特征提取的几个阶段,以获得所需的输出。在这项工作中,我们提出了基于EMG的框架,用于在执行灵巧的手中操作任务时,使用原始EMG信号输入以及两种名为时间多通道变压器和视觉变压器的新型深度学习(DL)技术来解码物体运动。将获得的结果在解码运动的准确性和速度方面与基于RF的模型和卷积神经网络进行比较,作为基准。使用10折交叉验证程序,以特定于运动对象和通用运动对象的方式对11名受试者的模型进行训练。这项研究表明,通过采用基于原始肌电激活的基于DL的模型,而不是开发具有手工特征的DL或经典机器学习模型,可以提高MuMIs的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验