Suppr超能文献

谷氨酰肽酶 1 的谷胱甘肽降解活性表现出其在拟南芥初级和次级硫代谢中的双重作用。

Glutathione degradation activity of γ-glutamyl peptidase 1 manifests its dual roles in primary and secondary sulfur metabolism in Arabidopsis.

机构信息

United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.

RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.

出版信息

Plant J. 2022 Sep;111(6):1626-1642. doi: 10.1111/tpj.15912. Epub 2022 Aug 6.

Abstract

Glutathione (GSH) functions as a major sulfur repository and hence occupies an important position in primary sulfur metabolism. GSH degradation results in sulfur reallocation and is believed to be carried out mainly by γ-glutamyl cyclotransferases (GGCT2;1, GGCT2;2, and GGCT2;3), which, however, do not fully explain the rapid GSH turnover. Here, we discovered that γ-glutamyl peptidase 1 (GGP1) contributes to GSH degradation through a yeast complementation assay. Recombinant proteins of GGP1, as well as GGP3, showed high degradation activity of GSH, but not of oxidized glutathione (GSSG), in vitro. Notably, the GGP1 transcripts were highly abundant in rosette leaves, in agreement with the ggp1 mutants constantly accumulating more GSH regardless of nutritional conditions. Given the lower energy requirements of the GGP- than the GGCT-mediated pathway, the GGP-mediated pathway could be a more efficient route for GSH degradation than the GGCT-mediated pathway. Therefore, we propose a model wherein cytosolic GSH is degraded chiefly by GGP1 and likely also by GGP3. Another noteworthy fact is that GGPs are known to process GSH conjugates in glucosinolate and camalexin synthesis; indeed, we confirmed that the ggp1 mutant contained higher levels of O-acetyl-l-Ser, a signaling molecule for sulfur starvation, and lower levels of glucosinolates and their degradation products. The predicted structure of GGP1 further provided a rationale for this hypothesis. In conclusion, we suggest that GGP1 and possibly GGP3 play vital roles in both primary and secondary sulfur metabolism.

摘要

谷胱甘肽 (GSH) 作为主要的硫储存库,在初级硫代谢中占有重要地位。GSH 的降解导致硫的再分配,据信主要是通过γ-谷氨酰环转移酶 (GGCT2;1、GGCT2;2 和 GGCT2;3) 进行的,但这些酶并不能完全解释 GSH 的快速周转。在这里,我们通过酵母互补测定发现 γ-谷氨酰肽酶 1 (GGP1) 通过一种酵母互补测定来促进 GSH 降解。GGP1 和 GGP3 的重组蛋白在体外对 GSH 具有很高的降解活性,但对氧化型谷胱甘肽 (GSSG) 没有活性。值得注意的是,在蔷薇叶中,GGP1 转录本的丰度很高,这与 ggp1 突变体无论营养条件如何都不断积累更多 GSH 的情况一致。考虑到 GGP 介导的途径比 GGCT 介导的途径需要更低的能量,GGP 介导的途径可能是 GSH 降解比 GGCT 介导的途径更有效的途径。因此,我们提出了一个模型,即细胞质中的 GSH 主要被 GGP1 降解,可能也被 GGP3 降解。另一个值得注意的事实是,GGPs 已知在硫代葡萄糖苷和 camalexin 合成中处理 GSH 缀合物;事实上,我们证实 ggp1 突变体含有更高水平的 O-乙酰-l-Ser,这是硫饥饿的信号分子,以及更低水平的硫代葡萄糖苷及其降解产物。GGP1 的预测结构进一步为这一假设提供了依据。总之,我们认为 GGP1 和可能的 GGP3 在初级和次级硫代谢中都发挥着重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f36b/9804317/3d4629ddd23d/TPJ-111-1626-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验