Suppr超能文献

基于 Z 数的空气质量指数在粗糙集理论框架下对 PM 和 PM 不同阈值的空气质量解释

Z-number-based AQI in rough set theoretic framework for interpretation of air quality for different thresholds of PM and PM.

机构信息

Center for Soft Computing Research, Indian Statistical Institute, Kolkata, 700108, India.

出版信息

Environ Monit Assess. 2022 Aug 6;194(9):653. doi: 10.1007/s10661-022-10325-z.

Abstract

Kolkata has a reputation for being one of the world's most polluted cities, particularly in the post-monsoon months of October, November, and December. Diwali, a Hindu festival, coincides with these months where a large number of firecrackers are set off followed by high emissions of air pollutants. As a result, the air quality index (AQI) deteriorates to "very poor" (301 ≤ AQI ≤ 400) and "poor" (201 ≤ AQI ≤ 300) categories. This situation stays for several days to a month. The present study aims to identify the thresholds for PM and PM that cause the AQI of Kolkata to deteriorate to "very poor" and "poor." For this purpose, we have used a rough set theory-based condition-decision support system to predict the aforementioned categories of AQI. We have developed a Z-number-based novel quantification measure of semantic information of AQI to assess the reliability of the outcomes, as generated from the condition-decision-based decision rules, during post-monsoon season. The result reveals the best possible forecast of AQI with linguistic summarization of the reliability or confidence for different threshold ranges of PM and PM. Inverse-decision rules based on rough set theory are utilized to justify and validate the forecasts. The explainability of the condition-decision support system is demonstrated/visualized using a flow graph that maps rough-rule-based different decision paths between input and output with strength, certainty, and coverage. The investigation resulted in an advanced intelligent environmental decision support system (IEDSS) for air-quality prediction.

摘要

加尔各答素有世界上污染最严重城市之一的声誉,尤其是在后季风季节的 10 月、11 月和 12 月。印度教节日排灯节与这些月份重合,在此期间会大量燃放烟花,随之而来的是空气污染物的大量排放。结果,空气质量指数(AQI)恶化到“很差”(301≤AQI≤400)和“差”(201≤AQI≤300)类别。这种情况会持续数天到一个月。本研究旨在确定导致加尔各答 AQI 恶化到“很差”和“差”的 PM 和 PM 的阈值。为此,我们使用基于粗糙集理论的条件决策支持系统来预测上述 AQI 类别。我们开发了一种基于 Z 数的空气质量指数语义信息的新量化度量,以评估基于条件决策的决策规则生成的结果在季风后季节的可靠性。结果显示了 AQI 的最佳预测,并对 PM 和 PM 的不同阈值范围内的可靠性或置信度进行了语言总结。基于粗糙集理论的逆决策规则用于验证和验证预测。使用流程图来证明/可视化条件决策支持系统的可解释性,该流程图映射了输入和输出之间基于粗糙规则的不同决策路径的强度、确定性和覆盖范围。该调查促成了用于空气质量预测的先进智能环境决策支持系统(IEDSS)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2293/9362145/560b223e24af/10661_2022_10325_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验