Suppr超能文献

预测和评估 COVID-19 封锁对加尔各答空气质量的影响:一种深度迁移学习方法。

Prediction and assessment of the impact of COVID-19 lockdown on air quality over Kolkata: a deep transfer learning approach.

机构信息

Center for Soft Computing Research, Indian Statistical Institute, Kolkata, 700108, India.

出版信息

Environ Monit Assess. 2022 Dec 22;195(1):223. doi: 10.1007/s10661-022-10761-x.

Abstract

The present study focuses on the prediction and assessment of the impact of lockdown because of coronavirus pandemic on the air quality during three different phases, viz., normal periods (1 January 2018-23 March 2020), complete lockdown (24 March 2020-31 May 2020), and partial lockdown (1 June 2020-30 September 2020). We identify the most important air pollutants influencing the air quality of Kolkata during three different periods using Random Forest, a tree-based machine learning (ML) algorithm. It is found that the ambient air quality of Kolkata is mainly affected with the aid of particulate matter or PM (PM and PM). However, the effect of the lockdown is most prominent on PM which spreads in the air of Kolkata due to diesel-driven vehicles, domestic and commercial combustion activities, road dust, and open burning. To predict urban PM and PM concentrations 24 h in advance, we use a deep learning (DL) model, namely, stacked-bidirectional long short-term memory (stacked-BDLSTM). The model is trained during the normal periods, and it shows the superiority over some supervised ML models, like support vector machine, K-nearest neighbor classifier, multilayer perceptron, long short-term memory, and statistical time series forecasting model autoregressive integrated moving average. This pre-trained stacked-BDLSTM is applied to predict the concentrations of PM and PM during the pandemic situation of two cases, viz., complete lockdown and partial lockdown using a deep model-based transfer learning (TL) approach (TLS-BDLSTM). Transfer learning aims to utilize the information gained from one problem to improve the predictive performance of a learning model for a different but related problem. Our work helps to demonstrate how TL is useful when there is a scarcity of data during the COVID-19 pandemic regarding the drastic change in concentration of pollutants. The results reveal the best prediction performance of TLS-BDLSTM with a lead time of 24 h as compared to some well-known traditional ML and statistical models and the pre-trained stacked-BDLSTM. The prediction is then validated using the real-time data obtained during the complete lockdown due to COVID second wave (16 May-15 June 2021) with different time steps, e.g., 24 h, 48 h, 72 h, and 96-120 h. TLS-BDLSTM involving transfer learning is seen to outperform the said comparing methods in modeling the long-term temporal dependency of multivariate time series data and boost the forecast efficiency not only in single step, but also in multiple steps. The proposed methodologies are effective, consistent, and can be used by operational organizations to utilize in monitoring and management of air quality.

摘要

本研究聚焦于预测和评估因冠状病毒大流行而导致的封锁对空气质量的影响,该影响分为三个不同阶段,分别为:正常时期(2018 年 1 月 1 日至 2020 年 3 月 23 日)、完全封锁时期(2020 年 3 月 24 日至 2020 年 5 月 31 日)和部分封锁时期(2020 年 6 月 1 日至 2020 年 9 月 30 日)。我们使用基于树的机器学习(ML)算法——随机森林,识别出在三个不同时期影响加尔各答空气质量的最重要的空气污染物。结果表明,加尔各答的大气环境质量主要受到颗粒物(PM 和 PM)的影响。然而,由于柴油驱动车辆、国内和商业燃烧活动、道路灰尘和露天燃烧,封锁对 PM 的影响最为显著,这些因素导致 PM 在加尔各答的空气中扩散。为了提前 24 小时预测城市 PM 和 PM 浓度,我们使用了深度学习(DL)模型,即堆叠双向长短时记忆(stacked-BDLSTM)。该模型在正常时期进行训练,与支持向量机、K-最近邻分类器、多层感知机、长短时记忆和统计时间序列预测模型自回归综合移动平均等监督 ML 模型相比,该模型表现出优越性。该预先训练的堆叠式 BDLSTM 用于使用基于深度学习的迁移学习(TL)方法(TLS-BDLSTM)预测完全封锁和部分封锁两种情况下的 PM 和 PM 浓度。迁移学习旨在利用从一个问题中获得的信息来提高学习模型对不同但相关问题的预测性能。我们的工作有助于证明在 COVID-19 大流行期间,由于污染物浓度的急剧变化,数据稀缺时,TL 是多么有用。结果表明,与一些知名的传统 ML 和统计模型以及预先训练的堆叠式 BDLSTM 相比,TLS-BDLSTM 具有最佳的 24 小时提前预测性能。然后使用在 2021 年 5 月 16 日至 6 月 15 日因第二波 COVID 而实施的完全封锁期间获得的实时数据,在不同的时间步长(例如 24 小时、48 小时、72 小时和 96-120 小时)下对预测进行验证。结果表明,与比较方法相比,涉及迁移学习的 TLS-BDLSTM 能够更好地对多变量时间序列数据的长期时间依赖性进行建模,并提高预测效率,不仅在单步预测中,而且在多步预测中也能提高预测效率。所提出的方法是有效的、一致的,可以由运营组织用于空气质量监测和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd6a/9771789/b357e0e46f24/10661_2022_10761_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验