Purification Process Sciences, BioPharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA.
Biologics Engineering, BioPharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca LLC, One Medimmune Way, Gaithersburg, MD 20878, USA.
J Chromatogr A. 2022 Aug 30;1679:463385. doi: 10.1016/j.chroma.2022.463385. Epub 2022 Jul 30.
Protein A chromatography with a high salt wash usually leads to robust clearance of host cell proteins (HCPs) in most recombinant monoclonal antibodies (mAbs), but a small subset of recalcitrant mAbs show significant HCP copurification. In this study, we carried out systematic studies using 4 different mAbs to explore the HCP copurification mechanism. HCP identification results revealed that the 3 high-HCP mAbs had many common HCPs which do not copurify with the low-HCP mAb, suggesting a similar mechanism is at play. Through wash evaluation, surface patch analysis, chain-swapping, domain evaluation, and structure-guided mutations, several charged residues in each mAb were found which correlated with HCP copurification. Surprisingly, these residues are also critical for self-association propensity. We observed an inverse correlation between diffusion interaction parameter and HCP copurification. Each of the high-HCP mAbs could form dynamic clusters consisting of 3∼6 mAb molecules. Therefore, a mAb cluster can exhibit higher net positive charges on the order of 3 to 6, compared with the individual mAb. In Protein A chromatography, high-HCP mAbs had elution tailing which contained high level of HCPs. Addition of Arginine-HCl or point mutations preventing cluster formation effectively reduced HCP copurification and elution tailing. Based on these results, we propose a novel HCP-copurification mechanism that formation of mAb clusters strengthens charge-charge interactions with HCPs and thus compromises HCP removal by Protein A chromatography. Besides arginine, histidine under acidic pH conditions prevented cluster formulation and resulted in effective HCP removal. Finally, structure-guided protein engineering and solution screening by using cluster size as indicator are useful tools for managing mAbs with high-HCP issues.
蛋白 A 层析采用高盐洗脱通常可以有效去除大多数重组单克隆抗体(mAb)中的宿主细胞蛋白(HCP),但有一小部分难以去除的 mAb 仍会与大量 HCP 共纯化。在这项研究中,我们使用 4 种不同的 mAb 进行了系统研究,以探索 HCP 共纯化的机制。通过 HCP 鉴定结果发现,3 种高 HCP mAb 有许多共同的 HCP 不与低 HCP mAb 共纯化,这表明存在相似的共纯化机制。通过洗脱评估、表面斑图分析、链交换、结构域评估和基于结构的突变,我们发现每个 mAb 中的几个带电残基与 HCP 共纯化相关。令人惊讶的是,这些残基对于自缔合倾向也很关键。我们观察到扩散相互作用参数与 HCP 共纯化呈负相关。每个高 HCP mAb 都可以形成由 3∼6 个 mAb 分子组成的动态聚集体。因此,与单个 mAb 相比,mAb 聚集体可以表现出高达 3 到 6 的更高净正电荷。在 Protein A 层析中,高 HCP mAb 洗脱时有拖尾,其中含有高水平的 HCP。添加盐酸精氨酸或突变以防止聚集体形成可以有效降低 HCP 共纯化和洗脱拖尾。基于这些结果,我们提出了一种新的 HCP 共纯化机制,即 mAb 聚集体的形成增强了与 HCP 的电荷-电荷相互作用,从而影响了 Protein A 层析去除 HCP 的效果。除了精氨酸,在酸性 pH 条件下,组氨酸可以防止聚集体形成,从而有效去除 HCP。最后,基于结构的蛋白质工程和使用聚集体大小作为指标的溶液筛选是解决高 HCP mAb 问题的有用工具。