Yang Xiaoqing, Xiang Huimin, Huang Jianying, Zhou Chuan, Ran Ran, Wang Wei, Zhou Wei, Shao Zongping
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China.
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China.
J Colloid Interface Sci. 2022 Dec 15;628(Pt A):476-485. doi: 10.1016/j.jcis.2022.07.165. Epub 2022 Jul 29.
Lead-free inorganic CsAgBiBr double perovskites have emerged as promising materials in perovskite solar cells (PSCs) to tackle the inferior stability and toxicity issues of organic-inorganic hybrid PSCs. However, the power conversion efficiencies (PCEs) of CsAgBiBr solar cells are remarkably restricted by the intrinsic and extrinsic defects of CsAgBiBr films. More specifically, the fast crystallization process in the formation of CsAgBiBr films strongly prevents the homogeneous growth of perovskite crystals, leading to inferior CsAgBiBr film quality. This work introduces a facile strategy to retard the crystallization of CsAgBiBr perovskites by introducing Lewis base additives into the precursor solution. The incorporation of a strongly coordinated thiourea additive with a sulfur donor leads to the generation of a Lewis acid base adduct, which retards the crystallization process for CsAgBiBr crystals, improves the quality of the CsAgBiBr film, decreases the defect density and inhibits charge carrier recombination. After optimization, the cell delivers a superior PCE of 3.07%, surpassing that reported for most CsAgBiBr-based solar cells in the literature, and exhibits outstanding stability with a PCE retention rate of 95% after 20 days of storage in air. This work provides an effective strategy for further improvements in the performance of inorganic lead-free CsAgBiBr-based photovoltaic cells.
无铅无机CsAgBiBr双钙钛矿已成为钙钛矿太阳能电池(PSC)中很有前景的材料,以解决有机-无机杂化PSC稳定性差和毒性问题。然而,CsAgBiBr太阳能电池的功率转换效率(PCE)受到CsAgBiBr薄膜的本征和非本征缺陷的显著限制。更具体地说,CsAgBiBr薄膜形成过程中的快速结晶过程强烈阻碍了钙钛矿晶体的均匀生长,导致CsAgBiBr薄膜质量较差。这项工作引入了一种简便的策略,通过向前驱体溶液中引入路易斯碱添加剂来延缓CsAgBiBr钙钛矿的结晶。具有硫供体的强配位硫脲添加剂的加入导致生成路易斯酸碱加合物,这延缓了CsAgBiBr晶体的结晶过程,提高了CsAgBiBr薄膜的质量,降低了缺陷密度并抑制了电荷载流子复合。经过优化,该电池实现了3.07%的优异PCE,超过了文献中报道的大多数基于CsAgBiBr的太阳能电池,并表现出出色的稳定性,在空气中储存20天后PCE保留率为95%。这项工作为进一步提高无机无铅CsAgBiBr基光伏电池的性能提供了一种有效策略。