Suppr超能文献

生物衍生的FeNi合金限制在N掺杂碳纳米片中作为锌空气电池的高效空气电极。

Bio-derived FeNi alloy confined in N-doped carbon nanosheets as efficient air electrodes for Zn-air battery.

作者信息

Lin Shi-Yi, Zhang Xin, Sang Si-Ying, Zhang Lu, Feng Jiu-Ju, Wang Ai-Jun

机构信息

College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.

College of Geography and Environmental Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.

出版信息

J Colloid Interface Sci. 2022 Dec 15;628(Pt A):499-507. doi: 10.1016/j.jcis.2022.07.180. Epub 2022 Aug 2.

Abstract

It is imperative to design and manufacture electrocatalysts towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for popularization of rechargeable Zn-air batteries. Herein, FeNi alloy confined in N-doped carbon nanosheets (FeNi@NCSs) was harvested via a facile complexation-pyrolysis strategy from the mixture of guanine and metal chlorides. After strictly exploring the pyrolysis temperature and metal types, the resulted FeNi@NCSs showed greatly improved performances on both the ORR (onset potential of 0.93 V and half-wave potential of 0.84 V) and OER (overpotential of 318 mV at 10 mA cm and 379 mV at 100 mA cm). Further, the FeNi@NCSs based Zn-air battery exhibited a higher open circuit voltage (1.496 V), a larger power density (128.8 mW cm), and prominent durability (360 cycles, 120 h). This study provides an appealing approach to utilize biomass for synthesis of low-cost and high-efficiency electrocatalysts in energy associated systems.

摘要

为了推动可充电锌空气电池的普及,设计并制造用于氧还原反应(ORR)和析氧反应(OER)的电催化剂势在必行。在此,通过一种简便的络合-热解策略,从鸟嘌呤和金属氯化物的混合物中制备出了负载于氮掺杂碳纳米片(FeNi@NCSs)中的FeNi合金。在严格探究热解温度和金属种类后,所得的FeNi@NCSs在ORR(起始电位为0.93 V,半波电位为0.84 V)和OER(在10 mA cm时过电位为318 mV,在100 mA cm时为379 mV)方面均表现出显著提升的性能。此外,基于FeNi@NCSs的锌空气电池展现出更高的开路电压(1.496 V)、更大的功率密度(128.8 mW cm)以及出色的耐久性(360次循环,120小时)。本研究提供了一种颇具吸引力的方法,可利用生物质在能源相关系统中合成低成本、高效率的电催化剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验