Sun Yahui, Zhang Xiaoyue, Chen Wei, Ye Jikai, Ju Shunlong, Aguey-Zinsou Kondo-Francois, Xia Guanglin, Sun Dalin, Yu Xuebin
Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China.
Merlin Group, School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
Small. 2022 Sep;18(35):e2202978. doi: 10.1002/smll.202202978. Epub 2022 Aug 7.
Requiring high temperature for hydrogen storage is the main feature impeding practical application of light metal hydrides. Herein, to lift the restrictions associated with traditional electric heating, light is used as an alternative energy input, and a light-mediated catalytic strategy coupling photothermal and catalytic effects is proposed. With NaAlH as the initial target material, TiO nanoparticles uniformly distribute on carbon nanosheets (TiO @C), which couples the catalytic effect of TiO and photothermal property of C, is constructed to drive reversible hydrogen storage in NaAlH under light irradiation. Under the catalysis of TiO @C, complete hydrogen release from NaAlH is achieved within 7 min under a light intensity of 10 sun. Furthermore, owing to the stable catalytic and photothermal effect of TiO @C, NaAlH delivers a reversible capacity of 4 wt% after 10 cycles with a capacity retention of 85% under light irradiation only. The proposed strategy is also applicable to other light metal hydrides such as LiAlH and MgH , validating its universality. The concept of light-driven hydrogen storage provides an alternative approach to electric heating, and the light-mediated catalytic strategy proposed herein paves the way to the design of reversible high-density hydrogen storage systems that do not rely on artificial energy.
储氢需要高温是阻碍轻金属氢化物实际应用的主要特征。在此,为了消除与传统电加热相关的限制,将光用作替代能量输入,并提出了一种耦合光热效应和催化效应的光介导催化策略。以NaAlH为初始目标材料,构建了均匀分布在碳纳米片上的TiO纳米颗粒(TiO@C),其耦合了TiO的催化作用和C的光热性质,以驱动NaAlH在光照下的可逆储氢。在TiO@C的催化下,在10个太阳的光强度下,NaAlH在7分钟内实现了完全放氢。此外,由于TiO@C稳定的催化和光热效应,NaAlH在仅光照下经过10次循环后具有4 wt%的可逆容量,容量保持率为85%。所提出的策略也适用于其他轻金属氢化物,如LiAlH和MgH,验证了其通用性。光驱动储氢的概念为电加热提供了一种替代方法,本文提出的光介导催化策略为设计不依赖人工能源的可逆高密度储氢系统铺平了道路。