Jogi Jayant K, Singhal S K, Jangir Ravindra, Dwivedi Abhilash, Tanna Ashish R, Singh Rashmi, Gupta Minal, Sagdeo Pankaj R
Department of Science and Humanities, Lukhdhirji Engineering College (Affiliated to Gujarat Technological University, Ahmedabad), Morbi, Gujarat India.
Synchrotron Utilization Section, Raja Ramanna Centre for Advance Technology, Indore, Madhya Pradesh India.
J Electron Mater. 2022;51(10):5482-5491. doi: 10.1007/s11664-022-09813-2. Epub 2022 Jul 29.
We report herein the synthesis of ZnFeO (ZF) nanoparticles via a simple and eco-friendly green route using lemon juice as a reducing agent and fuel. The effect of different calcination temperatures on the particle size and bandgap of grown ZF nanoparticles was investigated. The structural, morphological and optical properties of the synthesized nanoparticles were evaluated using synchrotron x-ray diffraction (S-XRD), field emission scanning electron microscopy (FE-SEM) and UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS), respectively. S-XRD confirmed a spinel F-d3m phase in all four samples calcined at 350°C, 550°C, 750°C and 1000°C. The crystallite size calculated from the Debye-Scherrer equation showed an increase from 14 nm to 20 nm with the increase in calcination temperature. Williamson-Hall (W-H) analysis revealed an increase in the particle size from 16 nm to 21 nm and a decrease in the lattice microstrain from 0.913 × 10 to 0.154 × 10 with the increase in calcination temperature. The optical bandgap of the ZF nanoparticles obtained from UV-Vis-DRS decreased from 2.265 eV to 2.225 eV with the increase in calcination temperature. The ZF nanoparticles with tunable particle size, lattice microstrain and optical bandgap have potential application in ferrofluid, electromagnetic shielding, photocatalysis, hyperthermia, dye degradation and other areas.
The online version contains supplementary material available at 10.1007/s11664-022-09813-2.
本文报道了通过一种简单且环保的绿色路线合成ZnFeO(ZF)纳米颗粒,该路线使用柠檬汁作为还原剂和燃料。研究了不同煅烧温度对生长的ZF纳米颗粒粒径和带隙的影响。分别使用同步辐射X射线衍射(S-XRD)、场发射扫描电子显微镜(FE-SEM)和紫外可见漫反射光谱(UV-Vis-DRS)对合成的纳米颗粒的结构、形态和光学性质进行了评估。S-XRD证实了在350°C、550°C、750°C和1000°C煅烧的所有四个样品中均为尖晶石F-d3m相。根据德拜-谢乐方程计算的微晶尺寸显示,随着煅烧温度的升高,从14nm增加到20nm。威廉姆森-霍尔(W-H)分析表明,随着煅烧温度的升高,粒径从16nm增加到21nm,晶格微应变从0.913×10减小到0.154×10。从UV-Vis-DRS获得的ZF纳米颗粒的光学带隙随着煅烧温度的升高从2.265eV降低到2.225eV。具有可调粒径、晶格微应变和光学带隙的ZF纳米颗粒在铁磁流体、电磁屏蔽、光催化、热疗、染料降解等领域具有潜在应用。
在线版本包含可在10.1007/s11664-022-09813-2获取的补充材料。