Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan.
Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan.
Environ Res. 2023 Aug 15;231(Pt 3):116241. doi: 10.1016/j.envres.2023.116241. Epub 2023 May 25.
In this work, lanthanum ferrite nanoparticles were synthesized via a simple co-precipitation method. Two different templates, namely sorbitol and mannitol, were used in this synthesis to tune the optical, structural, morphological, and photocatalytic properties of lanthanum ferrite. The synthesized lanthanum ferrite-sorbitol (LFOCo-So) and lanthanum ferrite-mannitol (LFOCo-Mo) were investigated through Ultraviolet-Visible (UV-Vis), X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR), Raman, Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX), and photoluminescence (PL) techniques to study the effects of the templates on the tunable properties of lanthanum ferrite nanoparticles. The UV-Vis study revealed a remarkably small bandgap (2.09 eV) of LFOCo-So compared to the LFOCo-Mo having a band gap of 2.46 eV. XRD analysis revealed a single-phased structure of LFOCo-So, whereas LFOCo-Mo showed different phases. The calculated crystallite sizes of LFOCo-So and LFOCo-Mo were 22 nm and 39 nm, respectively. FTIR spectroscopy indicated the characteristics of metal-oxygen vibrations of perovskites in both lanthanum ferrite (LFO) nanoparticles, whereas a slight shifting of Raman scattering modes in LFOCo-Mo in contrast to LFOCo-So showed the octahedral distortion of the perovskite by changing the template. SEM micrographs indicated porous particles of lanthanum ferrite with LFOCo-So being more uniformly distributed, and EDX confirmed the stoichiometric ratios of the lanthanum, iron, and oxygen in the fabricated lanthanum ferrite. The high-intensity green emission in the photoluminescence spectrum of LFOCo-So indicated more prominent oxygen vacancies than LFOCo-Mo. The photocatalytic efficiency of synthesized LFOCo-So and LFOCo-Mo was investigated against cefadroxil drug under solar light irradiation. At optimized photocatalytic conditions, LFOCo-So showed higher degradation efficiency of 87% in only 20 min than LFOCo-Mo having photocatalytic activity of 81%. The excellent recyclability of the LFOCo-So reflected that it could be reused without affecting photocatalytic efficiency. These findings showed that sorbitol is a useful template for the lanthanum ferrite particles imparting outstanding features, enabling it to be used as an efficient photocatalyst for environmental remediation.
在这项工作中,通过简单的共沉淀法合成了镧铁氧体纳米粒子。在该合成中使用了两种不同的模板,即山梨醇和甘露醇,以调整镧铁氧体的光学、结构、形态和光催化性能。通过紫外-可见(UV-Vis)、X 射线衍射(XRD)、傅里叶变换红外(FTIR)、拉曼、扫描电子显微镜-能量色散 X 射线(SEM-EDX)和光致发光(PL)技术对合成的镧铁氧体-山梨醇(LFOCo-So)和镧铁氧体-甘露醇(LFOCo-Mo)进行了研究,以研究模板对镧铁氧体纳米粒子可调性能的影响。UV-Vis 研究表明,与具有 2.46 eV 带隙的 LFOCo-Mo 相比,LFOCo-So 的带隙明显较小(2.09 eV)。XRD 分析表明 LFOCo-So 具有单相结构,而 LFOCo-Mo 则显示出不同的相。LFOCo-So 和 LFOCo-Mo 的计算晶粒尺寸分别为 22 nm 和 39 nm。FTIR 光谱表明两种镧铁氧体纳米粒子都具有钙钛矿的金属-氧振动特征,而 LFOCo-Mo 中拉曼散射模式的轻微移动表明通过改变模板,钙钛矿的八面体发生了扭曲。SEM 形貌图表明镧铁氧体具有多孔颗粒,LFOCo-So 分布更均匀,EDX 证实了所制备的镧铁氧体中镧、铁和氧的化学计量比。LFOCo-So 的光致发光光谱中存在高强度的绿色发射,表明其具有更多的显著氧空位,而 LFOCo-Mo 则较少。在太阳光照射下,研究了合成的 LFOCo-So 和 LFOCo-Mo 对头孢氨苄药物的光催化效率。在优化的光催化条件下,LFOCo-So 在仅 20 分钟内显示出 87%的更高降解效率,而 LFOCo-Mo 的光催化活性为 81%。LFOCo-So 的出色可回收性表明它可以重复使用而不会影响光催化效率。这些发现表明,山梨醇是一种有用的镧铁氧体颗粒模板,赋予其出色的特性,使其可作为用于环境修复的高效光催化剂。