Liu Yuzhi, Ding Zhong
School of Joumalism and Communication, Sichuan International Studies University, Chongqing, China.
Front Psychol. 2022 Jul 22;13:952622. doi: 10.3389/fpsyg.2022.952622. eCollection 2022.
Electronic commerce (E-commerce) through digital platforms relies on diverse user features to provide a better user experience. In particular, the user experience and connection between digital platforms are exploited through semantic emotions. This provides a personalized recommendation for different user categories across the E-commerce platforms. This manuscript introduces a Syntactic Data Inquiring Scheme (SDIS) to strengthen the semantic analysis. This scheme first identifies the emotional data based on user comments and repetition on the E-commerce platform. The identifiable and non-identifiable emotion data is classified using positive and repeated comments using the deep learning paradigm. This classification attunes the recommendation system for providing best-affordable user services through product selection, ease of access, promotions, etc. The proposed scheme strengthens the user relationship with the E-commerce platforms by improving the prioritization of user requirements. The user's interest and recommendation factors are classified and trained for further promotions/recommendations in the learning process. The recommendation data classified from the learning process is used to train and improve the user-platform relationship. The proposed scheme's performance is analyzed through appropriate experimental considerations. From the experimental analysis, as the session frequency increases, the proposed SDIS maximizes recommendation by 15.1%, the data analysis ratio by 9.41%, and reduces the modification rate by 17%.
通过数字平台进行的电子商务依赖于多样的用户特征来提供更好的用户体验。特别是,数字平台之间的用户体验和连接是通过语义情感来利用的。这为电子商务平台上的不同用户类别提供了个性化推荐。本文介绍了一种句法数据查询方案(SDIS)以加强语义分析。该方案首先根据电子商务平台上的用户评论和重复内容识别情感数据。使用深度学习范式,通过积极和重复的评论对可识别和不可识别的情感数据进行分类。这种分类调整了推荐系统,以便通过产品选择、便捷访问、促销等提供最实惠的用户服务。所提出的方案通过提高用户需求的优先级来加强用户与电子商务平台的关系。在学习过程中,对用户的兴趣和推荐因素进行分类和训练,以进行进一步的推广/推荐。从学习过程中分类得到的推荐数据用于训练和改善用户与平台的关系。通过适当的实验考量对所提出方案的性能进行分析。从实验分析来看,随着会话频率的增加,所提出的SDIS使推荐最大化15.1%,数据分析率最大化9.41%,并将修改率降低17%。