Suppr超能文献

基于 NTM 的联合技能知识追踪技术。

NTM-Based Skill-Aware Knowledge Tracing for Conjunctive Skills.

机构信息

School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China.

Ant Group, Hangzhou, China.

出版信息

Comput Intell Neurosci. 2022 Jul 27;2022:9153697. doi: 10.1155/2022/9153697. eCollection 2022.

Abstract

Knowledge tracing (KT) is the task of modelling students' knowledge state based on their historical interactions on intelligent tutoring systems. Existing KT models ignore the relevance among the multiple knowledge concepts of a question and characteristics of online tutoring systems. This paper proposes a neural Turing machine-based skill-aware knowledge tracing (NSKT) for conjunctive skills, which can capture the relevance among the knowledge concepts of a question to model students' knowledge state more accurately and to discover more latent relevance among knowledge concepts effectively. We analyze the characteristics of the three real-world KT datasets in depth. Experiments on real-world datasets show that NSKT outperforms the state-of-the-art deep KT models on the AUC of prediction. This paper explores details of the prediction process of NSKT in modelling students' knowledge state, as well as the relevance of knowledge concepts and conditional influences between exercises.

摘要

知识追踪(KT)是根据学生在智能辅导系统上的历史交互来建模学生知识状态的任务。现有的 KT 模型忽略了问题的多个知识概念之间的相关性和在线辅导系统的特点。本文提出了一种基于神经图灵机的技能感知知识追踪(NSKT)方法,用于连接技能,它可以更准确地捕捉问题的知识概念之间的相关性,更有效地发现知识概念之间的潜在相关性。我们深入分析了三个真实世界 KT 数据集的特点。在真实数据集上的实验表明,NSKT 在预测 AUC 方面优于最先进的深度 KT 模型。本文探索了 NSKT 在建模学生知识状态过程中的预测细节,以及知识概念的相关性和练习之间的条件影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e4e/9348931/fa6255a05456/CIN2022-9153697.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验