Sun Zhihui, Wei Chaohui, Tian Meng, Jiang Yongxiang, Rummeli Mark H, Yang Ruizhi
College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China.
Institute of Environmental Technology, VSB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 70833, Czech Republic.
ACS Appl Mater Interfaces. 2022 Aug 17;14(32):36753-36762. doi: 10.1021/acsami.2c10635. Epub 2022 Aug 8.
The sluggish redox reaction kinetics for aprotic Li-O batteries (LOBs) caused by the insulating discharge product of LiO could result in the poor round-trip efficiency, low rate capability, and cyclic stability. To address these challenges, we herein fabricated NiCoS supported on reduced graphene oxide (NiCoS@rGO), the surface of which is further modified via a unique low-pressure capacitive-coupled nitrogen plasma (CCPN-NiCoS@rGO). The high ionization environment of the plasma could etch the surface of NiCoS@rGO, introducing effective nitrogen doping. The as-prepared CCPN-NiCoS@rGO has been employed as an efficient catalyst for advanced LOBs. The electrochemical analysis, combined with theoretical calculations, reveals that the N-doping can effectively improve the thermodynamics and kinetics for LiO adsorption, giving rise to a well-knit LiO formation on CCPN-NiCoS@rGO. The LOBs based on the CCPN-NiCoS@rGO oxygen electrode deliver a low overpotential of 0.75 V, a high discharge capacity of 10,490 mA h g, and an improved cyclic stability (more than 110 cycles). This contribution may pave a promising avenue for facile surface engineering of the electrocatalyst in LOBs and other energy storage systems.
非质子锂氧电池(LOBs)中由LiO绝缘放电产物导致的缓慢氧化还原反应动力学,可能会导致往返效率低、倍率性能差和循环稳定性不佳。为应对这些挑战,我们在此制备了负载在还原氧化石墨烯上的NiCoS(NiCoS@rGO),其表面通过独特的低压电容耦合氮等离子体进一步改性(CCPN-NiCoS@rGO)。等离子体的高电离环境可以蚀刻NiCoS@rGO的表面,引入有效的氮掺杂。所制备的CCPN-NiCoS@rGO已被用作先进LOBs的高效催化剂。电化学分析与理论计算相结合表明,氮掺杂可以有效地改善LiO吸附的热力学和动力学,从而在CCPN-NiCoS@rGO上形成紧密的LiO。基于CCPN-NiCoS@rGO氧电极的LOBs具有0.75 V的低过电位、10490 mA h g的高放电容量和改善的循环稳定性(超过110次循环)。这一贡献可能为LOBs和其他储能系统中电催化剂的简便表面工程开辟一条有前景的途径。