Hebborn C, Hupin G, Kravvaris K, Quaglioni S, Navrátil P, Gysbers P
Facility for Rare Isotope Beams, East Lansing, Michigan 48824, USA.
Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA.
Phys Rev Lett. 2022 Jul 22;129(4):042503. doi: 10.1103/PhysRevLett.129.042503.
The rate at which helium (^{4}He) and deuterium (d) fuse together to produce lithium-6 (^{6}Li) and a γ ray, ^{4}He(d,γ)^{6}Li, is a critical puzzle piece in resolving the discrepancy between big bang predictions and astronomical observations for the primordial abundance of ^{6}Li. The accurate determination of this radiative capture rate requires the quantitative and predictive description of the fusion probability across the big bang energy window (30 keV≲E≲400 keV), where measurements are hindered by low counting rates. We present first-principle (or, ab initio) predictions of the ^{4}He(d,γ)^{6}Li astrophysical S factor using validated nucleon-nucleon and three-nucleon interactions derived within the framework of chiral effective field theory. By employing the ab initio no-core shell model with continuum to describe ^{4}He-d scattering dynamics and bound ^{6}Li product on an equal footing, we accurately and consistently determine the contributions of the main electromagnetic transitions driving the radiative capture process. Our results reveal an enhancement of the capture probability below 100 keV owing to previously neglected magnetic dipole (M1) transitions and reduce by an average factor of 7 the uncertainty of the thermonuclear capture rate between 0.002 and 2 GK.
氦(⁴He)与氘(d)融合生成锂 - 6(⁶Li)并产生γ射线,即⁴He(d,γ)⁶Li的速率,是解决大爆炸预测与原初⁶Li丰度天文观测之间差异的关键拼图。准确确定这种辐射俘获率需要对大爆炸能量窗口(30 keV≲E≲400 keV)内的融合概率进行定量和预测性描述,在此能量窗口内,测量因计数率低而受阻。我们使用在手征有效场理论框架内推导的经过验证的核子 - 核子和三核子相互作用,给出了⁴He(d,γ)⁶Li天体物理S因子的第一性原理(或从头算)预测。通过采用带连续谱的从头算无芯壳模型,以同等方式描述⁴He - d散射动力学和束缚的⁶Li产物,我们准确且一致地确定了驱动辐射俘获过程的主要电磁跃迁的贡献。我们的结果表明,由于先前被忽略的磁偶极(M1)跃迁,俘获概率在100 keV以下有所增强,并且将0.002至2 GK之间热核俘获率的不确定性平均降低了7倍。