Guo Hua, Song Shanshan, Yin Haozhou, Ren Daokuan, Zhu Xiuwei
College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
Sci Rep. 2024 Aug 3;14(1):17985. doi: 10.1038/s41598-024-68998-0.
With the development of wireless communication technology, Ultra-Wideband (UWB) has become an important solution for indoor positioning. In complex indoor environments, the influence of non-line-of-sight (NLOS) factors leads to increased positioning errors. To improve the positioning accuracy, fuzzy iterative self-organizing data analysis clustering algorithm (ISODATA) is introduced to process a large amount of UWB data to reduce the influence of NLOS factors, and to stabilize positioning error within 2 cm, enhances the accuracy of the positioning system. To further improve the running efficiency of the algorithm, FPGA is used to accelerate the key computational part of the algorithm, compared with running on the MATLAB platform, which improves the speed about 100 times, enhances the algorithm's computational speed dramatically.
随着无线通信技术的发展,超宽带(UWB)已成为室内定位的重要解决方案。在复杂的室内环境中,非视距(NLOS)因素的影响会导致定位误差增加。为了提高定位精度,引入模糊迭代自组织数据分析聚类算法(ISODATA)来处理大量的UWB数据,以减少NLOS因素的影响,并将定位误差稳定在2厘米以内,提高了定位系统的精度。为了进一步提高算法的运行效率,采用现场可编程门阵列(FPGA)对算法的关键计算部分进行加速,与在MATLAB平台上运行相比,速度提高了约100倍,显著提高了算法的计算速度。