Miyazaki Takuya, Chen Shaoyi, Florinas Stelios, Igarashi Kazunori, Matsumoto Yu, Yamasoba Tatsuya, Xu Ze-Qi, Wu Herren, Gao Changshou, Kataoka Kazunori, Christie R James, Cabral Horacio
Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan.
ACS Nano. 2022 Aug 23;16(8):12290-12304. doi: 10.1021/acsnano.2c03170. Epub 2022 Aug 9.
Assessment of drug activation and subsequent interaction with targets in living tissues could guide nanomedicine design, but technologies enabling insight into how a drug reaches and binds its target are limited. We show that a Hoechst-based reporter system can monitor drug release and engagement from a nanoparticle delivery system and , elucidating differences in target-bound drug distribution related to drug-linker and nanoparticle properties. Drug engagement is defined as chemical detachment of drug or reporter from a nanoparticle and subsequent binding to a subcellular target, which in the case of Hoechst results in a fluorescence signal. Hoechst-based nanoreporters for drug activation contain prodrug elements such as dipeptide linkers, conjugation handles, and nanoparticle modifications such as targeting ligands to determine how nanomedicine design affects distribution of drug engaged with a subcellular target, which is tracked cellular nuclear fluorescence . Furthermore, the nanoplatform is amenable toward common maleimide-based linkers found in many prodrug-based delivery systems including polymer-, peptide-, and antibody-drug conjugates. Findings from the Hoechst reporter system were applied to develop highly potent, targeted, anticancer micelle nanoparticles delivering a monomethyl auristatin E (MMAE) prodrug comprising the same linkers employed in Hoechst studies. MMAE nanomedicine with the optimal drug-linker resulted in effective tumor growth inhibition in mice without associated acute toxicity, whereas the nonoptimal linker that showed broader drug activation in Hoechst reporter studies resulted in severe toxicity. Our results demonstrate the potential to synergize direct visualization of drug engagement with nanomedicine drug-linker design to optimize safety and efficacy.
评估药物在活组织中的激活以及随后与靶点的相互作用可以指导纳米药物设计,但能够深入了解药物如何到达并结合其靶点的技术有限。我们表明,基于Hoechst的报告系统可以监测纳米颗粒递送系统中的药物释放和结合情况,并阐明与药物连接体和纳米颗粒特性相关的靶点结合药物分布差异。药物结合定义为药物或报告分子从纳米颗粒上化学解离并随后与亚细胞靶点结合,就Hoechst而言,这会产生荧光信号。用于药物激活的基于Hoechst的纳米报告分子包含前药元件,如二肽连接体、共轭基团,以及纳米颗粒修饰,如靶向配体,以确定纳米药物设计如何影响与亚细胞靶点结合的药物分布,通过细胞核荧光进行跟踪。此外,该纳米平台适用于许多基于前药的递送系统中常见的基于马来酰亚胺的连接体,包括聚合物-、肽-和抗体-药物偶联物。基于Hoechst报告系统的研究结果被应用于开发高效、靶向的抗癌胶束纳米颗粒,其递送一种单甲基澳瑞他汀E(MMAE)前药,该前药包含与Hoechst研究中使用的相同连接体。具有最佳药物连接体的MMAE纳米药物在小鼠中有效抑制肿瘤生长且无相关急性毒性,而在Hoechst报告研究中显示出更广泛药物激活的非最佳连接体则导致严重毒性。我们的结果证明了将药物结合的直接可视化与纳米药物连接体设计相结合以优化安全性和有效性的潜力。