PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal.
Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-F-30200, Bagnols-sur-Cèze, France.
J Plant Physiol. 2022 Sep;276:153788. doi: 10.1016/j.jplph.2022.153788. Epub 2022 Aug 1.
As drought threatens crop productivity it is crucial to characterize the defense mechanisms against water deficit and unveil their interaction with the expected rise in the air [CO]. For that, plants of Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu grown under 380 (aCO) or 700 μL L (eCO) were exposed to moderate (MWD) and severe (SWD) water deficits. Responses were characterized through the activity and/or abundance of a selected set of proteins associated with antioxidative (e.g., Violaxanthin de-epoxidase, Superoxide dismutase, Ascorbate peroxidases, Monodehydroascorbate reductase), energy/sugar (e.g., Ferredoxin-NADP reductase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, sucrose synthase, mannose-6-phosphate isomerase, Enolase), and lipid (Lineolate 13S-lipoxygenase) processes, as well as with other antioxidative (ascorbate) and protective (HSP70) molecules. MWD caused small changes in both genotypes regardless of [CO] level while under the single imposition to SWD, only Icatu showed a global reinforcement of most studied proteins supporting its tolerance to drought. eCO alone did not promote remarkable changes but strengthened a robust multi-response under SWD, even supporting the reversion of impacts already observed by CL153 at aCO. In the context of climate changes where water constraints and [CO] levels are expected to increase, these results highlight why eCO might have an important role in improving drought tolerance in Coffea species.
随着干旱威胁作物生产力,描述植物对水分亏缺的防御机制并揭示它们与预期升高的大气[CO]之间的相互作用至关重要。为此,在 380(aCO)或 700 μL/L(eCO)下生长的咖啡品种 C. canephora cv. Conilon Clone 153(CL153)和 C. arabica cv. Icatu 暴露于中度(MWD)和严重(SWD)水分亏缺下。通过与抗氧化(如,叶黄素脱环氧化酶、超氧化物歧化酶、抗坏血酸过氧化物酶、单脱氢抗坏血酸还原酶)、能量/糖(如,铁氧还蛋白-NADP 还原酶、NADP 依赖性甘油醛-3-磷酸脱氢酶、蔗糖合酶、甘露糖-6-磷酸异构酶、烯醇酶)和脂质(亚麻酸 13S-脂氧合酶)过程相关的一组选定蛋白质的活性和/或丰度,以及其他抗氧化(抗坏血酸)和保护(HSP70)分子,来对响应进行特征描述。MWD 导致两个基因型的变化都很小,而无论[CO]水平如何,在单一 SWD 胁迫下,只有 Icatu 显示出大多数研究蛋白质的全面增强,支持其对干旱的耐受性。eCO 单独作用不会引起显著变化,但在 SWD 下加强了强大的多响应,甚至支持了在 aCO 下已经观察到的 CL153 的影响的逆转。在气候变化的背景下,预计水分限制和[CO]水平将会增加,这些结果强调了为什么 eCO 可能在提高咖啡物种的耐旱性方面发挥重要作用。