Liza Nishattasnim, Lu Yuhui, Blair Enrique P
Electrical and Computer Engineering Department, Baylor University, Waco, TX, United States of America.
Nanotechnology. 2022 Aug 30;33(46). doi: 10.1088/1361-6528/ac8810.
Quantum-dot cellular automata (QCA) is a nanoscale, transistor-less device technology. A single molecule may provide an elementary QCA device known as a cell. Molecular redox centers function as quantum dots, and the configuration of mobile charge on the dots encodes device states useful for classical computing. Molecular QCA may support ultra-high device densities and THz-scale switching speeds at room temperature. An applied electric field may be used to clock molecular QCA, providing power gain to boost weakened signals, as well as quasi-adiabatic device operation for minimal power dissipation in QCA devices and circuits. A zwitterionic, Y-shaped, three-dot molecule may function as a field-clocked QCA cell. We focus on the design of a counterion built into the center of the cell.computations demonstrate that choice of counterion determines the number of mobile charges for encoding the device state on the three quantum dots. We useB5H52-orB4CH5-as the central counterionic linker for two different Y-shaped, three-dot QCA molecules. While both molecules support the desired device states, the number of trapped charges in the counterion determines the number of mobile holes on the molecular quantum dots. This, in turn, determines whether the device state is encoded by a hole or an electron. This choice of encoding determines how the molecular QCA cell responds to a clocking field. The two counterions studied here lead to two QCA molecules with opposite responses to the clock, similar to the complementary responses of PMOS and NMOS transistors to gated voltage control.
量子点细胞自动机(QCA)是一种纳米级、无晶体管的器件技术。单个分子可提供一种称为细胞的基本QCA器件。分子氧化还原中心充当量子点,量子点上移动电荷的配置对经典计算有用的器件状态进行编码。分子QCA在室温下可支持超高的器件密度和太赫兹级的开关速度。施加的电场可用于为分子QCA计时,提供功率增益以增强减弱的信号,以及准绝热器件操作,以实现QCA器件和电路中的最小功耗。一种两性离子的Y形三点分子可充当场控QCA细胞。我们专注于设计内置在细胞中心的抗衡离子。计算表明,抗衡离子的选择决定了在三个量子点上编码器件状态的移动电荷数量。我们使用B5H52-或B4CH5-作为两种不同的Y形三点QCA分子的中心抗衡离子连接体。虽然这两种分子都支持所需的器件状态,但抗衡离子中捕获的电荷数量决定了分子量子点上移动空穴的数量。这反过来又决定了器件状态是由空穴还是电子编码。这种编码选择决定了分子QCA细胞对计时场的响应方式。这里研究的两种抗衡离子导致了两种对时钟有相反响应的QCA分子,类似于PMOS和NMOS晶体管对门控电压控制的互补响应。