Univ Brest, CNRS, Lab-STICC, CS 93837, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France; Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany; Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
Bioelectrochemistry. 2022 Oct;147:108222. doi: 10.1016/j.bioelechem.2022.108222. Epub 2022 Aug 3.
Using fast imaging microscopy, we investigate in detail the expansion of micron-sized pores occurring in individual electroporated giant unilamellar vesicles composed of the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). To infer pore dynamics on the electrodeformed and electropermeabilized vesicles, we develop a computational approach and provide for the first time a direct evidence of quantitative agreement between experimental data and the well-established theoretical prediction of Smith, Neu and Krassowska (SNK). The analysis we describe also provides an extension to the current theoretical literature on how the conductivity ratio of the internal and the external vesicle solution plays a determinant role in the definition of the electrical force driving pore expansion kinetics.
使用快速成像显微镜,我们详细研究了由磷脂 1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱(POPC)组成的单个电穿孔的巨大单层囊泡中微米大小的孔的扩展。为了推断电极形成和电穿孔囊泡上的孔动力学,我们开发了一种计算方法,并首次提供了实验数据与 Smith、Neu 和 Krassowska(SNK)的成熟理论预测之间定量一致的直接证据。我们描述的分析还扩展了当前关于内部和外部囊泡溶液电导率比如何在定义驱动孔扩展动力学的电力方面起着决定性作用的理论文献。