Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
Nature. 2022 Oct;610(7930):87-93. doi: 10.1038/s41586-022-05175-1. Epub 2022 Aug 9.
Direct molecular editing of heteroarene carbon-hydrogen (C-H) bonds through consecutive selective C-H functionalization has the potential to grant rapid access into diverse chemical spaces, which is a valuable but often challenging venture to achieve in medicinal chemistry. In contrast to electronically biased heterocyclic C-H bonds, remote benzocyclic C-H bonds on bicyclic aza-arenes are especially difficult to differentiate because of the lack of intrinsic steric/electronic biases. Here we report two conceptually distinct directing templates that enable the modular differentiation and functionalization of adjacent remote (C6 versus C7) and positionally similar (C3 versus C7) positions on bicyclic aza-arenes through careful modulation of distance, geometry and previously unconsidered chirality in template design. This strategy enables direct C-H olefination, alkynylation and allylation at adjacent C6 and C7 positions of quinolines in the presence of a competing C3 position that is spatially similar to C7. Notably, such site-selective, iterative and late-stage C-H editing of quinoline-containing pharmacophores can be performed in a modular fashion in different orders to suit bespoke synthetic applications. This Article, in combination with previously reported complementary methods, now fully establishes a unified late-stage 'molecular editing' strategy to directly modify bicyclic aza-arenes at any given site in different orders.
通过连续的选择性 C-H 功能化,直接对杂芳烃 C-H 键进行分子编辑,有可能快速进入不同的化学空间,这在药物化学中是一项有价值但常常具有挑战性的任务。与电子偏向的杂环 C-H 键相比,双环氮杂芳烃上的远程苯并环 C-H 键由于缺乏内在的空间/电子偏向性,因此特别难以区分。在这里,我们报告了两种概念上不同的导向模板,通过在模板设计中仔细调节距离、几何形状和以前未考虑的手性,可以对双环氮杂芳烃上相邻的远程(C6 与 C7)和位置相似(C3 与 C7)位置进行模块化区分和功能化。该策略能够在空间上与 C7 相似的竞争 C3 位置存在的情况下,直接在喹啉的相邻 C6 和 C7 位置进行 C-H 烯丙基化、炔丙基化和烯丙基化。值得注意的是,这种含有喹啉的药效团的位点选择性、迭代和晚期 C-H 编辑可以以模块化的方式在不同的顺序中进行,以适应定制的合成应用。本文与之前报道的互补方法相结合,现在完全建立了一种统一的晚期“分子编辑”策略,可以在不同的顺序中直接修饰任何给定位置的双环氮杂芳烃。