Suppr超能文献

溪流微生物组编码跨尺度的水文学数据。

The streamwater microbiome encodes hydrologic data across scales.

机构信息

Water Resources Graduate Program, Oregon State University, USA; Department of Biological and Ecological Engineering, Oregon State University, USA; Department of Civil Engineering, University of Colorado Denver, USA.

Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Sweden; Department of Environmental Science, Policy, and Management, University of California Berkeley, USA.

出版信息

Sci Total Environ. 2022 Nov 25;849:157911. doi: 10.1016/j.scitotenv.2022.157911. Epub 2022 Aug 6.

Abstract

Many fundamental questions in hydrology remain unanswered due to the limited information that can be extracted from existing data sources. Microbial communities constitute a novel type of environmental data, as they are comprised of many thousands of taxonomically and functionally diverse groups known to respond to both biotic and abiotic environmental factors. As such, these microscale communities reflect a range of macroscale conditions and characteristics, some of which also drive hydrologic regimes. Here, we assess the extent to which streamwater microbial communities (as characterized by 16S gene amplicon sequence abundance) encode information about catchment hydrology across scales. We analyzed 64 summer streamwater DNA samples collected from subcatchments within the Willamette, Deschutes, and John Day river basins in Oregon, USA, which range 0.03-29,000 km in area and 343-2334 mm/year of precipitation. We applied information theory to quantify the breadth and depth of information about common hydrologic metrics encoded within microbial taxa. Of the 256 microbial taxa that spanned all three watersheds, we found 9.6 % (24.5/256) of taxa, on average, shared information with a given hydrologic metric, with a median 15.6 % (range = 12.4-49.2 %) reduction in uncertainty of that metric based on knowledge of the microbial biogeography. All of the hydrologic metrics we assessed, including daily discharge at different time lags, mean monthly discharge, and seasonal high and low flow durations were encoded within the microbial community. Summer microbial taxa shared the most information with winter mean flows. Our study demonstrates quantifiable relationships between streamwater microbial taxa and hydrologic metrics at different scales, likely resulting from the integration of multiple overlapping drivers of each. Streamwater microbial communities are rich sources of information that may contribute fresh insight to unresolved hydrologic questions.

摘要

由于从现有数据源中提取的信息有限,水文学中的许多基本问题仍然没有答案。微生物群落构成了一种新型的环境数据,因为它们由数千个在分类学和功能上多样化的群体组成,这些群体已知会对生物和非生物环境因素做出反应。因此,这些微观群落反映了一系列宏观条件和特征,其中一些也会驱动水文状况。在这里,我们评估了溪流微生物群落(通过 16S 基因扩增子序列丰度来描述)在多大程度上编码了有关流域水文的信息,范围从微观到宏观。我们分析了美国俄勒冈州威拉米特、德舒特和约翰迪河流域内的 64 个夏季溪流水样的 DNA,这些水样的集水区面积从 0.03 到 29,000 平方公里不等,年降水量从 343 到 2334 毫米不等。我们应用信息论来量化微生物分类群中常见水文指标编码的信息量的广度和深度。在跨越所有三个流域的 256 个微生物分类群中,我们发现平均有 9.6%(24.5/256)的分类群与给定的水文指标共享信息,基于微生物生物地理学知识,该指标的不确定性平均降低了 15.6%(范围为 12.4-49.2%)。我们评估的所有水文指标,包括不同时间滞后的日流量、月平均流量、季节性高流量和低流量持续时间,都包含在微生物群落中。夏季微生物分类群与冬季平均流量共享最多的信息。我们的研究表明,在不同尺度上,溪流微生物分类群与水文指标之间存在可量化的关系,这可能是由于每个指标的多个重叠驱动因素的综合作用。溪流微生物群落是丰富的信息来源,可能为解决未决的水文问题提供新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验