Suppr超能文献

机器学习在额眶缝早闭中的应用:表型严重程度是否可预测长期美观结局?

Machine Learning in Metopic Craniosynostosis: Does Phenotypic Severity Predict Long-Term Esthetic Outcome?

机构信息

Division of Plastic, Reconstructive and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia.

Division of Plastic Surgery, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA.

出版信息

J Craniofac Surg. 2023;34(1):58-64. doi: 10.1097/SCS.0000000000008868. Epub 2022 Aug 10.

Abstract

BACKGROUND

There have been few longitudinal studies assessing the effect of preoperative phenotypic severity on long-term esthetic outcomes in metopic craniosynostosis. This study evaluates the relationship between metopic severity and long-term esthetic outcomes using interfrontal angle (IFA) and CranioRate, a novel metopic synostosis severity measure.

METHODS

Patients with metopic craniosynostosis who underwent bifrontal orbital advancement and remodeling between 2012 and 2017 were reviewed. Preoperative computed tomography head scans were analyzed for IFA and CranioRate, a machine learning algorithm which generates quantitative severity ratings including metopic severity score (MSS) and cranial morphology deviation (CMD). Long-term esthetic outcomes were assessed by craniofacial surgeons using blinded 3-rater esthetic grading of clinical photos. Raters assessed Whitaker score and the presence of temporal hollowing, lateral orbital retrusion, frontal bone irregularities and/or "any visible irregularities."

RESULTS

Preoperative scans were performed at a mean age of 7.7±3.4 months, with average MSS of 6/10, CMD of 200/300, and IFA of 116.8±13.8 degrees. Patients underwent bifrontal orbital advancement and remodeling at mean 9.9±3.1 months. The average time from operation to esthetic assessment was 5.4±1.0 years. Pearson correlation revealed a significant negative correlation between MSS and age at computed tomography ( r =-0.451, P =0.004) and IFA ( r =-0.371, P =0.034) and between IFA and age at surgery ( r =-0.383, P =0.018). In multinomial logistic regression, preoperative MSS was the only independent predictor of visible irregularities (odds ratio=2.18, B =0.780, P =0.024) and preoperative IFA alone significantly predicted Whitaker score, with more acute IFA predicting worse Whitaker score (odds ratio=0.928, B =-0.074, P =0.928).

CONCLUSIONS

More severe preoperative phenotypes of metopic craniosynostosis were associated with worse esthetic dysmorphology. Objective measures of preoperative metopic severity predicted long-term esthetic outcomes.

摘要

背景

鲜有研究评估术前表型严重程度对额骨矢状缝早闭远期美学效果的影响。本研究使用额眶角(IFA)和颅率(一种新的额缝早闭严重程度评估方法)评估额缝严重程度与远期美学效果之间的关系。

方法

回顾了 2012 年至 2017 年间接受双侧额眶骨切开和重塑的额骨矢状缝早闭患者。对术前头颅 CT 扫描进行分析,以获得 IFA 和颅率,颅率是一种生成定量严重程度评分的机器学习算法,包括额缝严重程度评分(MSS)和颅骨形态偏差(CMD)。由颅面外科医生使用盲法 3 名评分者对临床照片进行美学分级,评估远期美学效果。评分者评估 Whitaker 评分以及颞部凹陷、外侧眶窝后缩、额骨不规则和/或“任何可见的不规则”的存在情况。

结果

术前扫描时平均年龄为 7.7±3.4 个月,平均 MSS 为 6/10,CMD 为 200/300,IFA 为 116.8±13.8 度。患者平均在 9.9±3.1 个月时行双侧额眶骨切开和重塑术。从手术到美学评估的平均时间为 5.4±1.0 年。Pearson 相关性分析显示,MSS 与 CT 检查时的年龄( r =-0.451, P =0.004)和 IFA( r =-0.371, P =0.034)呈显著负相关,IFA 与手术时的年龄( r =-0.383, P =0.018)呈显著负相关。多变量逻辑回归分析显示,术前 MSS 是可见畸形的唯一独立预测因子(优势比=2.18, B =0.780, P =0.024),而术前 IFA 单独显著预测 Whitaker 评分,较陡的 IFA 预示 Whitaker 评分更差(优势比=0.928, B =-0.074, P =0.928)。

结论

额缝早闭术前表型越严重,远期美学畸形越严重。术前额缝严重程度的客观指标可预测远期美学效果。

相似文献

1
Machine Learning in Metopic Craniosynostosis: Does Phenotypic Severity Predict Long-Term Esthetic Outcome?
J Craniofac Surg. 2023;34(1):58-64. doi: 10.1097/SCS.0000000000008868. Epub 2022 Aug 10.
2
A Longitudinal Analysis of Pre- and Post-Operative Dysmorphology in Metopic Craniosynostosis.
Cleft Palate Craniofac J. 2024 Mar 14:10556656241237605. doi: 10.1177/10556656241237605.
3
Relating Metopic Craniosynostosis Severity to Intracranial Pressure.
J Craniofac Surg. 2022;33(8):2372-2378. doi: 10.1097/SCS.0000000000008748. Epub 2022 Jul 22.
4
"Validation of Artificial Intelligence Severity Assessment in Metopic Craniosynostosis".
Cleft Palate Craniofac J. 2023 Mar;60(3):274-279. doi: 10.1177/10556656211061021. Epub 2021 Nov 17.
5
CranioRate: An Image-Based, Deep-Phenotyping Analysis Toolset and Online Clinician Interface for Metopic Craniosynostosis.
Plast Reconstr Surg. 2024 Jan 1;153(1):112e-119e. doi: 10.1097/PRS.0000000000010452. Epub 2023 Mar 22.
6
Validating the Supraorbital Notch-Nasion-Supraorbital Notch Angle as a Marker for Metopic Craniosynostosis Severity.
J Craniofac Surg. 2024 Jun 1;35(4):1035-1039. doi: 10.1097/SCS.0000000000010302. Epub 2024 May 14.
7
Post-Surgical Relapse in Metopic Synostosis and Limitations of the Interfrontal Angle as an Outcome Measure.
J Craniofac Surg. 2017 Jul;28(5):e494-e500. doi: 10.1097/SCS.0000000000003800.
8
Are endoscopic and open treatments of metopic synostosis equivalent in treating trigonocephaly and hypotelorism?
J Craniofac Surg. 2015 Jan;26(1):129-34. doi: 10.1097/SCS.0000000000001321.
9
A critical eye on metopic craniosynostosis: A retrospective study assessing orbital dysmorphology as a marker of disease.
J Craniomaxillofac Surg. 2024 Jul;52(7):865-871. doi: 10.1016/j.jcms.2024.04.015. Epub 2024 May 3.
10
A Suture-specific Photo Score for Metopic Synostosis.
J Craniofac Surg. 2024;35(1):75-79. doi: 10.1097/SCS.0000000000009773. Epub 2023 Oct 10.

引用本文的文献

1
Artificial Intelligence Applications in Pediatric Craniofacial Surgery.
Diagnostics (Basel). 2025 Mar 25;15(7):829. doi: 10.3390/diagnostics15070829.
2
Forehead Shape Analysis following Surgical and Conservative Treatment in Metopic Synostosis: A 3-Dimensional Photogrammetry Analysis.
Plast Reconstr Surg. 2025 Jul 1;156(1):103e-111e. doi: 10.1097/PRS.0000000000011753. Epub 2024 Sep 23.
3
Machine learning applications in craniosynostosis diagnosis and treatment prediction: a systematic review.
Childs Nerv Syst. 2024 Aug;40(8):2535-2544. doi: 10.1007/s00381-024-06409-5. Epub 2024 Apr 22.
4
Automated surgical planning in spring-assisted sagittal craniosynostosis correction using finite element analysis and machine learning.
PLoS One. 2023 Nov 28;18(11):e0294879. doi: 10.1371/journal.pone.0294879. eCollection 2023.
5
Morphologic Severity and Age at Surgery Are Associated with School-Age Neurocognitive Outcomes in Metopic Craniosynostosis.
Plast Reconstr Surg. 2024 Oct 1;154(4):824-835. doi: 10.1097/PRS.0000000000010999. Epub 2023 Aug 15.
6
Technical evolution of pediatric neurosurgery: craniosynostosis from 1972 to 2023 and beyond.
Childs Nerv Syst. 2023 Oct;39(10):2779-2787. doi: 10.1007/s00381-023-06113-w. Epub 2023 Aug 16.

本文引用的文献

1
Relating Metopic Craniosynostosis Severity to Intracranial Pressure.
J Craniofac Surg. 2022;33(8):2372-2378. doi: 10.1097/SCS.0000000000008748. Epub 2022 Jul 22.
5
Part 1: Surgical Correction in 231 Trigonocephaly Patients - The Alder Hey Experience.
J Craniofac Surg. 2021 Sep 1;32(6):2123-2128. doi: 10.1097/SCS.0000000000007475.
7
The Impact of Ethnicity on Craniosynostosis in the United States.
J Craniofac Surg. 2019 Nov-Dec;30(8):2526-2529. doi: 10.1097/SCS.0000000000006009.
8
Investigating the cause of late deformity following fronto-orbital remodelling for metopic synostosis using 3D CT imaging.
J Craniomaxillofac Surg. 2019 Jan;47(1):170-178. doi: 10.1016/j.jcms.2018.11.008. Epub 2018 Nov 16.
9
Surgical Hypercorrection of Trigonocephaly: Evaluation of Surgical Outcomes.
J Craniofac Surg. 2018 Jan;29(1):56-61. doi: 10.1097/SCS.0000000000004044.
10
A Craniometric Analysis of Cranial Base and Cranial Vault Differences in Patients With Metopic Craniosynostosis.
J Craniofac Surg. 2017 Nov;28(8):2030-2035. doi: 10.1097/SCS.0000000000003888.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验