Suppr超能文献

使用机器学习开发QSAR模型以及对多酚衍生物作为胰脂肪酶抑制剂抗肥胖作用的分子对接研究。

Development of QSAR model using machine learning and molecular docking study of polyphenol derivatives against obesity as pancreatic lipase inhibitor.

作者信息

Modanwal Shristi, Maurya Akhilesh Kumar, Mishra Saurav Kumar, Mishra Nidhi

机构信息

Chemistry Laboratory, Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India.

出版信息

J Biomol Struct Dyn. 2023 Aug-Sep;41(14):6569-6580. doi: 10.1080/07391102.2022.2109753. Epub 2022 Aug 10.

Abstract

In developed countries and developing countries, obesity/overweight is considered a major problem, in fact, it is now recognized as a major metabolic disorder. Additionally, obesity is connected with other metabolic diseases, including cardiovascular disorders, type 2 diabetes, some types of cancer, etc. Therefore, the development of novel drugs/medications for obesity is essential. The best target for treating obesity is Pancreatic Lipase (PL), it breaks 50-70% triglycerides into monoglycerol and free fatty acids.The major aim of this in silico study is to generate a QSAR model by using Multiple Linear Regression (MLR) and to inhibit pancreatic lipase by polyphenol derivatives mainly flavonoids, plant secondary metabolites shows good inhibitory activity against PL, maybe with less unpleasant side effects.In this in silico study, a potent inhibitor was found through calculating drug likness, QSAR (Quantitative structure-activity relationship) and molecular docking. The docking was performed in Maestro 12.0 and the ADME (absorption, distribution, metabolism, and excretion) properties (drug-likeness) of compounds/ligands were predicted by the Qikprop module of Maestro 12.0. The QSAR model was developed to show the relationship between the chemical/structural properties and the compound's biological activity. We have found the best interaction between pancreatic lipase and flavonoids. The best docked compound is Epigallocatechin 3,5,-di-O-gallate with docking score -10.935 kcal/mol .All compounds also show drug-likeness activity.The developed model has satisfied all internal and external validation criteria and has square correlation coefficient (r2) 0.8649, which shows its predictive ability and has good acceptability, predictive ability, and statistical robustness.Communicated by Ramaswamy H. Sarma.

摘要

在发达国家和发展中国家,肥胖/超重都被视为一个主要问题,事实上,它现在被公认为一种主要的代谢紊乱。此外,肥胖与其他代谢性疾病有关,包括心血管疾病、2型糖尿病、某些类型的癌症等。因此,开发治疗肥胖的新型药物至关重要。治疗肥胖的最佳靶点是胰脂肪酶(PL),它能将50 - 70%的甘油三酯分解为单甘油酯和游离脂肪酸。本计算机模拟研究的主要目的是通过多元线性回归(MLR)生成一个定量构效关系(QSAR)模型,并利用多酚衍生物(主要是黄酮类化合物,植物次生代谢产物对PL显示出良好的抑制活性,可能副作用较小)来抑制胰脂肪酶。在本计算机模拟研究中,通过计算药物相似性、QSAR(定量构效关系)和分子对接发现了一种强效抑制剂。对接在Maestro 12.0中进行,化合物/配体的吸收、分布、代谢和排泄(ADME)性质(药物相似性)由Maestro 12.0的Qikprop模块预测。开发QSAR模型以显示化学/结构性质与化合物生物活性之间的关系。我们发现胰脂肪酶与黄酮类化合物之间的最佳相互作用。最佳对接化合物是表没食子儿茶素3,5 - 二 - O - 没食子酸酯,对接分数为 - 10.935 kcal/mol。所有化合物也都显示出药物相似性活性。所开发的模型满足所有内部和外部验证标准,平方相关系数(r2)为0.8649,这表明其具有预测能力,并且具有良好的可接受性、预测能力和统计稳健性。由拉马斯瓦米·H·萨尔马传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验