Lu Haoran, Long Run
College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, People's Republic of China.
J Phys Chem Lett. 2022 Aug 18;13(32):7532-7540. doi: 10.1021/acs.jpclett.2c02211. Epub 2022 Aug 10.
We conducted ab initio molecular dynamics (AIMD) and nonadiabatic MD to simulate polaron formation and recombination in all-inorganic CsBiBr perovskite. The meticulously designed AIMD simulations show that two types of small hole polaron, including localized and semidelocalized small hole polaron on either an intralayer or an interlayer Br dimer, are adiabatically formed within 1.71 ps. The localized small hole polaron reduces nonadiabatic coupling and decoherence time and, thus, delays charge recombination to 213 ns. In contrast, the dominant semidelocalized polaron increases nonadiabatic coupling by enhancing electron-hole overlap and restores the energy gap and decoherence time to the pristine system, accelerating recombination to 4.7 ns compared to a 10 ns charge carrier lifetime in the pristine system. All the obtained time scales agree well with experiments. The study offers a fundamental understanding of the excited-state dynamics of small hole polaron in CsBiBr and helps to design high-performance perovskite optoelectronics and photovoltaics.
我们进行了从头算分子动力学(AIMD)和非绝热分子动力学模拟,以研究全无机CsBiBr钙钛矿中的极化子形成和复合过程。精心设计的AIMD模拟表明,两种类型的小空穴极化子,即层内或层间Br二聚体上的局域化和半局域化小空穴极化子,在1.71皮秒内绝热形成。局域化小空穴极化子降低了非绝热耦合和退相干时间,从而将电荷复合延迟至213纳秒。相比之下,占主导地位的半局域化极化子通过增强电子-空穴重叠增加了非绝热耦合,并将能隙和退相干时间恢复到原始系统,与原始系统中10纳秒的电荷载流子寿命相比,加速复合至4.7纳秒。所有获得的时间尺度与实验结果吻合良好。该研究为理解CsBiBr中小空穴极化子的激发态动力学提供了基础,并有助于设计高性能的钙钛矿光电器件和光伏器件。